資源描述:
《2015屆高三溫州十校期中聯(lián)考數(shù)學(xué)(理)試題》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫(kù)。
1、2014學(xué)年第一學(xué)期十校聯(lián)合體高三期中聯(lián)考數(shù)學(xué)(理)試卷(滿分150分,考試時(shí)間:120分鐘)第Ⅰ卷(選擇題共50分)一、選擇題(本大題共10小題,每小題5分,滿分50分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.已知集合,,則()A. B.C. D.2.設(shè),則“”是“”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件(第3題圖)正視圖側(cè)視圖俯視圖3.某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖中的的值是()A.2B.C.D.34.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,下列命題中錯(cuò)誤的是()
2、A.若,,,則B.若,,,則C.若,,則D.若,,,則5.將函數(shù)的圖象向左平移個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)的圖象,則的解析式為()A.B.C.D.6.設(shè)M(x0,y0)為拋物線C:x2=8y上一點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),以F為圓心,
3、FM
4、為半徑的圓和拋物線的準(zhǔn)線相交,則y0的取值范圍是( )A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)7.設(shè)等差數(shù)列的前項(xiàng)和為,若,則滿足的正整數(shù)的值為()A.13B.12C.11D.108.設(shè)函數(shù)是二次函數(shù),,若函數(shù)的值域是,則函數(shù)的值域是()A.B.C.D.9.若是一個(gè)集合,是一個(gè)以的某些
5、子集為元素的集合,且滿足:①屬于,屬于;②中任意多個(gè)元素的并集屬于;③中任意多個(gè)元素的交集屬于.則稱是集合上的一個(gè)拓?fù)洌阎?,?duì)于下面給出的四個(gè)集合:①;②;③;④.其中是集合上的拓?fù)涞募系男蛱?hào)是()A.①B.②C.②③D.②④10.設(shè)函數(shù),若實(shí)數(shù)滿足,則()A.B.C.D.第Ⅱ卷(非選擇題共100分)二、填空題(本大題共7小題,每小題4分,滿分28分)11.已知函數(shù)則=_______________.12.若點(diǎn)M()為平面區(qū)域上的一個(gè)動(dòng)點(diǎn),則的最大值是_______13.若數(shù)列的前項(xiàng)和,則=___________14.已知,則.15.過(guò)雙曲
6、線-=1(a>0,b>0)的左焦點(diǎn)F作圓x2+y2=的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線右支于點(diǎn)P,若E為PF的中點(diǎn),則雙曲線的離心率為________.16.已知是單位向量,.若向量滿足______17.函數(shù),其中,若動(dòng)直線與函數(shù)的圖像有三個(gè)不同的交點(diǎn),它們的橫坐標(biāo)分別為,則是否存在最大值?若存在,在橫線處填寫其最大值;若不存在,直接填寫“不存在”______________三、解答題(本大題共5小題,滿分72分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟)18.已知函數(shù).(Ⅰ)求該函數(shù)圖象的對(duì)稱軸;(Ⅱ)在中,角所對(duì)的邊分別為,且滿足,求的取值范圍.
7、19.已知等差數(shù)列的各項(xiàng)均為正數(shù),,其前項(xiàng)和為,為等比數(shù)列,,且.(Ⅰ)求與;(Ⅱ)若對(duì)任意正整數(shù)和任意恒成立,求實(shí)數(shù)的取值范圍.20.如圖,已知四棱錐,底面為菱形,平面,,分別是的中點(diǎn).PBECDFA(Ⅰ)證明:;(Ⅱ)若,求二面角的余弦值.高三期中數(shù)學(xué)試卷第3頁(yè)共4頁(yè)21.已知橢圓:的離心率,并且經(jīng)過(guò)定點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)為橢圓的左右頂點(diǎn),為直線上的一動(dòng)點(diǎn)(點(diǎn)不在x軸上),連交橢圓于點(diǎn),連并延長(zhǎng)交橢圓于點(diǎn),試問(wèn)是否存在,使得成立,若存在,求出的值;若不存在,說(shuō)明理由.22.已知函數(shù).(Ⅰ)若函數(shù)為偶函數(shù),求的值;(Ⅱ)若,求函數(shù)的單
8、調(diào)遞增區(qū)間;(Ⅲ)當(dāng)時(shí),若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.2014學(xué)年第一學(xué)期十校聯(lián)合體高三期中聯(lián)考數(shù)學(xué)(理)參考答案一、選擇題:本大題共有10小題,每小題5分,共50分.題號(hào)12345678910答案CADDACBBDA二、填空題:本大題共有7小題,每小題4分,共28分.11.____12.___1____13._-814.________15.6.17.1三、解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.18.解:(Ⅰ)由即即對(duì)稱軸為……………………6分(Ⅱ)由已知b2=ac即的值域?yàn)?……………………14
9、分19.解:(1)設(shè)的公差為,且的公比為…………………7分(2),∴,(10分)問(wèn)題等價(jià)于的最小值大于或等于,即,即,解得?!?4分20.解:(Ⅰ)證明:由四邊形為菱形,,可得為正三角形.因?yàn)闉榈闹悬c(diǎn),所以.又,因此.因?yàn)槠矫妫矫?,所以.而平面,平面且,所以平面.又平面,所以.?分)(Ⅱ)解法一:因?yàn)槠矫?,平面,所以平面平面.P過(guò)作于,則平面,過(guò)作于,連接,則為二面角的平面角,SFADOCEB在中,,,又是的中點(diǎn),在中,,又,在中,,即所求二面角的余弦值為.(14分)解法二:由(Ⅰ)知兩兩垂直,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐
10、標(biāo)系,又分別為的中點(diǎn),所以PBECDFAyzx,,所以.設(shè)平面的一法向量為,則因此取,則,因?yàn)椋?,,所以平面,故為平面的?/p>