bp神經(jīng)網(wǎng)絡(luò)在matlab函數(shù)逼近中的應(yīng)用

bp神經(jīng)網(wǎng)絡(luò)在matlab函數(shù)逼近中的應(yīng)用

ID:15655509

大小:505.50 KB

頁數(shù):23頁

時(shí)間:2018-08-04

bp神經(jīng)網(wǎng)絡(luò)在matlab函數(shù)逼近中的應(yīng)用_第1頁
bp神經(jīng)網(wǎng)絡(luò)在matlab函數(shù)逼近中的應(yīng)用_第2頁
bp神經(jīng)網(wǎng)絡(luò)在matlab函數(shù)逼近中的應(yīng)用_第3頁
bp神經(jīng)網(wǎng)絡(luò)在matlab函數(shù)逼近中的應(yīng)用_第4頁
bp神經(jīng)網(wǎng)絡(luò)在matlab函數(shù)逼近中的應(yīng)用_第5頁
資源描述:

《bp神經(jīng)網(wǎng)絡(luò)在matlab函數(shù)逼近中的應(yīng)用》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、燕山大學(xué)模式識(shí)別與智能系統(tǒng)導(dǎo)論題目:BP網(wǎng)絡(luò)在函數(shù)逼近中的應(yīng)用專業(yè):控制工程姓名:XXX學(xué)號(hào):一BP神經(jīng)網(wǎng)絡(luò)及其原理-1-1.1BP神經(jīng)網(wǎng)絡(luò)定義-1-1.2BP神經(jīng)網(wǎng)絡(luò)模型及其基本原理-1-1.3BP神經(jīng)網(wǎng)絡(luò)的主要功能-3-1.4BP網(wǎng)絡(luò)的優(yōu)點(diǎn)以及局限性-3-二基于MATLAB的BP神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)-6-2.1BP網(wǎng)絡(luò)創(chuàng)建函數(shù)-7-2.2神經(jīng)元上的傳遞函數(shù)-7-2.3BP網(wǎng)絡(luò)學(xué)習(xí)函數(shù)-8-2.4BP網(wǎng)絡(luò)訓(xùn)練函數(shù)-9-三BP網(wǎng)絡(luò)在函數(shù)逼近中的應(yīng)用-10-3.1問題的提出-10-3.2基于BP神經(jīng)網(wǎng)絡(luò)逼近函數(shù)-10-3.3不同頻率下的

2、逼近效果-14-3.4討論-17-一BP神經(jīng)網(wǎng)絡(luò)及其原理1.1BP神經(jīng)網(wǎng)絡(luò)定義BP(BackPropagation)神經(jīng)網(wǎng)絡(luò)是一種神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法。其由輸入層、中間層、輸出層組成的階層型神經(jīng)網(wǎng)絡(luò),中間層可擴(kuò)展為多層。相鄰層之間各神經(jīng)元進(jìn)行全連接,而每層各神經(jīng)元之間無連接,網(wǎng)絡(luò)按有教師示教的方式進(jìn)行學(xué)習(xí),當(dāng)一對(duì)學(xué)習(xí)模式提供給網(wǎng)絡(luò)后,各神經(jīng)元獲得網(wǎng)絡(luò)的輸入響應(yīng)產(chǎn)生連接權(quán)值(Weight)。然后按減小希望輸出與實(shí)際輸出誤差的方向,從輸出層經(jīng)各中間層逐層修正各連接權(quán),回到輸入層。此過程反復(fù)交替進(jìn)行,直至網(wǎng)絡(luò)的全局誤差趨向給定的極小值,即完成

3、學(xué)習(xí)的過程。1.2BP神經(jīng)網(wǎng)絡(luò)模型及其基本原理BP網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱層和輸出層組成。圖7為一個(gè)典型的三層BP網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu),層與層之間采用全互連方式,同一層之間不存在相互連接,隱層可以有一層或多層。層與層之間有兩種信號(hào)在流通:一種是工作信號(hào)(用實(shí)線表示),它是施加輸入信號(hào)后向前傳播直到在輸出端產(chǎn)生實(shí)際輸出的信號(hào),是輸入和權(quán)值的函數(shù)。另一種是誤差信號(hào)(用虛線表示),網(wǎng)絡(luò)實(shí)際輸出與期望輸出間的差值即為誤差,它由輸出端開始逐層向后傳播。BP網(wǎng)絡(luò)的學(xué)習(xí)過程程由前向計(jì)算過程和誤差反向傳播過程組成。在前向計(jì)算過程中,輸入量

4、從輸入層經(jīng)隱層逐層計(jì)算,并傳向輸出層,每層神經(jīng)元的狀態(tài)只影響下一層神經(jīng)元的狀態(tài)。如輸出層不能得到期望的輸出,則轉(zhuǎn)入誤差反向傳播過程,誤差信號(hào)沿原來的連接通路返回,逐次調(diào)整網(wǎng)絡(luò)各層的權(quán)值和閾值,直至到達(dá)輸入層,再重復(fù)向計(jì)算。這兩個(gè)過程一次反復(fù)進(jìn)行,不斷調(diào)整各層的權(quán)值和閾值,使得網(wǎng)絡(luò)誤差最小或達(dá)到人們所期望的要求時(shí),學(xué)習(xí)過程結(jié)束。-20-圖1 典型BP神經(jīng)網(wǎng)絡(luò)模型生物神經(jīng)元信號(hào)的傳遞是通過突觸進(jìn)行的一個(gè)復(fù)雜的電化學(xué)等過程,在人工神經(jīng)網(wǎng)絡(luò)中是將其簡化模擬成一組數(shù)字信號(hào)通過一定的學(xué)習(xí)規(guī)則而不斷變動(dòng)更新的過程,這組數(shù)字儲(chǔ)存在神經(jīng)元之間的連接權(quán)

5、重。網(wǎng)絡(luò)的輸入層模擬的是神經(jīng)系統(tǒng)中的感覺神經(jīng)元,它接收輸入樣本信號(hào)。輸入信號(hào)經(jīng)輸入層輸入,通過隱含層的復(fù)雜計(jì)算由輸出層輸出,輸出信號(hào)與期望輸出相比較,若有誤差,再將誤差信號(hào)反向由輸出層通過隱含層處理后向輸入層傳播。在這個(gè)過程中,誤差通過梯度下降算法,分?jǐn)偨o各層的所有單元,從而獲得各單元的誤差信號(hào),以此誤差信號(hào)為依據(jù)修正各單元權(quán)值,網(wǎng)絡(luò)權(quán)值因此被重新分布。此過程完成后,輸入信號(hào)再次由輸入層輸入網(wǎng)絡(luò),重復(fù)上述過程。這種信號(hào)正向傳播與誤差反向傳播的各層權(quán)值調(diào)整過程周而復(fù)始地進(jìn)行著,直到網(wǎng)絡(luò)輸出的誤差減少到可以接受的程度,或進(jìn)行到預(yù)先設(shè)定的

6、學(xué)習(xí)次數(shù)為止。權(quán)值不斷調(diào)整的過程就是網(wǎng)絡(luò)的學(xué)習(xí)訓(xùn)練過程。BP神經(jīng)網(wǎng)絡(luò)的信息處理方式具有如下特點(diǎn):-20-1)信息分布存儲(chǔ)。人腦存儲(chǔ)信息的特點(diǎn)是利用突觸效能的變化來調(diào)整存儲(chǔ)內(nèi)容,即信息存儲(chǔ)在神經(jīng)元之間的連接強(qiáng)度的分布上,BP神經(jīng)網(wǎng)絡(luò)模擬人腦的這一特點(diǎn),使信息以連接權(quán)值的形式分布于整個(gè)網(wǎng)絡(luò)。2)信息并行處理。人腦神經(jīng)元之間傳遞脈沖信號(hào)的速度遠(yuǎn)低于馮·諾依曼計(jì)算機(jī)的工作速度,但是在很多問題上卻可以做出快速的判斷、決策和處理,這是由于人腦是一個(gè)大規(guī)模并行與串行組合的處理系統(tǒng)。BP神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)模仿人腦,具有并行處理的特征,大大提高了網(wǎng)絡(luò)

7、功能。3)具有容錯(cuò)性。生物神經(jīng)系統(tǒng)部分不嚴(yán)重?fù)p傷并不影響整體功能,BP神經(jīng)網(wǎng)絡(luò)也具有這種特性,網(wǎng)絡(luò)的高度連接意味著少量的誤差可能不會(huì)產(chǎn)生嚴(yán)重的后果,部分神經(jīng)元的損傷不破壞整體,它可以自動(dòng)修正誤差。這與現(xiàn)代計(jì)算機(jī)的脆弱性形成鮮明對(duì)比。4)具有自學(xué)習(xí)、自組織、自適應(yīng)的能力。BP神經(jīng)網(wǎng)絡(luò)具有初步的自適應(yīng)與自組織能力,在學(xué)習(xí)或訓(xùn)練中改變突觸權(quán)值以適應(yīng)環(huán)境,可以在使用過程中不斷學(xué)習(xí)完善自己的功能,并且同一網(wǎng)絡(luò)因?qū)W習(xí)方式的不同可以具有不同的功能,它甚至具有創(chuàng)新能力,可以發(fā)展知識(shí),以至超過設(shè)計(jì)者原有的知識(shí)水平。1.3BP神經(jīng)網(wǎng)絡(luò)的主要功能目前,在

8、人工神經(jīng)網(wǎng)絡(luò)的實(shí)際應(yīng)用中。絕大部分的神經(jīng)網(wǎng)絡(luò)模型都采用BP神經(jīng)網(wǎng)絡(luò)及其變化形式。它也是前向網(wǎng)絡(luò)的核心部分,體現(xiàn)了人工神經(jīng)網(wǎng)絡(luò)的精華。BP網(wǎng)絡(luò)主要用于以下四方面。(1)函數(shù)逼近:用輸入向量和相應(yīng)的輸出向量訓(xùn)練一個(gè)網(wǎng)絡(luò)以逼近一個(gè)函數(shù)。(2

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。