主成分分析實例及含義講解(ppt)課件

主成分分析實例及含義講解(ppt)課件

ID:21614670

大?。?69.50 KB

頁數(shù):106頁

時間:2018-10-23

主成分分析實例及含義講解(ppt)課件_第1頁
主成分分析實例及含義講解(ppt)課件_第2頁
主成分分析實例及含義講解(ppt)課件_第3頁
主成分分析實例及含義講解(ppt)課件_第4頁
主成分分析實例及含義講解(ppt)課件_第5頁
資源描述:

《主成分分析實例及含義講解(ppt)課件》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、主成分分析和因子分析吳喜之1匯報什么?假定你是一個公司的財務(wù)經(jīng)理,掌握了公司的所有數(shù)據(jù),比如固定資產(chǎn)、流動資金、每一筆借貸的數(shù)額和期限、各種稅費、工資支出、原料消耗、產(chǎn)值、利潤、折舊、職工人數(shù)、職工的分工和教育程度等等。如果讓你向上面介紹公司狀況,你能夠把這些指標(biāo)和數(shù)字都原封不動地擺出去嗎?當(dāng)然不能。你必須要把各個方面作出高度概括,用一兩個指標(biāo)簡單明了地把情況說清楚。2主成分分析每個人都會遇到有很多變量的數(shù)據(jù)。比如全國或各個地區(qū)的帶有許多經(jīng)濟(jì)和社會變量的數(shù)據(jù);各個學(xué)校的研究、教學(xué)等各種變量的數(shù)據(jù)等等。這些數(shù)

2、據(jù)的共同特點是變量很多,在如此多的變量之中,有很多是相關(guān)的。人們希望能夠找出它們的少數(shù)“代表”來對它們進(jìn)行描述。本章就介紹兩種把變量維數(shù)降低以便于描述、理解和分析的方法:主成分分析(principalcomponentanalysis)和因子分析(factoranalysis)。實際上主成分分析可以說是因子分析的一個特例。在引進(jìn)主成分分析之前,先看下面的例子。3成績數(shù)據(jù)(student.sav)100個學(xué)生的數(shù)學(xué)、物理、化學(xué)、語文、歷史、英語的成績?nèi)缦卤恚ú糠郑?從本例可能提出的問題目前的問題是,能不能把

3、這個數(shù)據(jù)的6個變量用一兩個綜合變量來表示呢?這一兩個綜合變量包含有多少原來的信息呢?能不能利用找到的綜合變量來對學(xué)生排序呢?這一類數(shù)據(jù)所涉及的問題可以推廣到對企業(yè),對學(xué)校進(jìn)行分析、排序、判別和分類等問題。5空間的點例中的的數(shù)據(jù)點是六維的;也就是說,每個觀測值是6維空間中的一個點。我們希望把6維空間用低維空間表示。先假定只有二維,即只有兩個變量,它們由橫坐標(biāo)和縱坐標(biāo)所代表;因此每個觀測值都有相應(yīng)于這兩個坐標(biāo)軸的兩個坐標(biāo)值;如果這些數(shù)據(jù)形成一個橢圓形狀的點陣(這在變量的二維正態(tài)的假定下是可能的)那么這個橢圓有一

4、個長軸和一個短軸。在短軸方向上,數(shù)據(jù)變化很少;在極端的情況,短軸如果退化成一點,那只有在長軸的方向才能夠解釋這些點的變化了;這樣,由二維到一維的降維就自然完成了。67橢球的長短軸當(dāng)坐標(biāo)軸和橢圓的長短軸平行,那么代表長軸的變量就描述了數(shù)據(jù)的主要變化,而代表短軸的變量就描述了數(shù)據(jù)的次要變化。但是,坐標(biāo)軸通常并不和橢圓的長短軸平行。因此,需要尋找橢圓的長短軸,并進(jìn)行變換,使得新變量和橢圓的長短軸平行。如果長軸變量代表了數(shù)據(jù)包含的大部分信息,就用該變量代替原先的兩個變量(舍去次要的一維),降維就完成了。橢圓(球)的

5、長短軸相差得越大,降維也越有道理。89主軸和主成分對于多維變量的情況和二維類似,也有高維的橢球,只不過無法直觀地看見罷了。首先把高維橢球的主軸找出來,再用代表大多數(shù)數(shù)據(jù)信息的最長的幾個軸作為新變量;這樣,主成分分析就基本完成了。注意,和二維情況類似,高維橢球的主軸也是互相垂直的。這些互相正交的新變量是原先變量的線性組合,叫做主成分(principalcomponent)。10主成分之選取正如二維橢圓有兩個主軸,三維橢球有三個主軸一樣,有幾個變量,就有幾個主成分。選擇越少的主成分,降維就越好。什么是標(biāo)準(zhǔn)呢?那

6、就是這些被選的主成分所代表的主軸的長度之和占了主軸長度總和的大部分。有些文獻(xiàn)建議,所選的主軸總長度占所有主軸長度之和的大約85%即可,其實,這只是一個大體的說法;具體選幾個,要看實際情況而定。11主成分分析的數(shù)學(xué)要尋找方差最大的方向。即使得向量X的線性組合a’X的方差最大的方向a.而Var(a’X)=a’Cov(X)a;由于Cov(X)未知;于是用X的樣本相關(guān)陣R來近似.因此,要尋找向量a使得a’Ra最大(注意相關(guān)陣和協(xié)方差陣差一個常數(shù)記得相關(guān)陣和特征值問題嗎?回顧一下吧!選擇幾個主成分呢?要看“貢獻(xiàn)率.”

7、12對于我們的數(shù)據(jù),SPSS輸出為這里的InitialEigenvalues就是這里的六個主軸長度,又稱特征值(數(shù)據(jù)相關(guān)陣的特征值)。頭兩個成分特征值累積占了總方差的81.142%。后面的特征值的貢獻(xiàn)越來越少。13特征值的貢獻(xiàn)還可以從SPSS的所謂碎石圖看出14怎么解釋這兩個主成分。前面說過主成分是原始六個變量的線性組合。是怎么樣的組合呢?SPSS可以輸出下面的表。這里每一列代表一個主成分作為原來變量線性組合的系數(shù)(比例)。比如第一主成分為數(shù)學(xué)、物理、化學(xué)、語文、歷史、英語這六個變量的線性組合,系數(shù)(比例)

8、為-0.806,-0.674,-0.675,0.893,0.825,0.836。15如用x1,x2,x3,x4,x5,x6分別表示原先的六個變量,而用y1,y2,y3,y4,y5,y6表示新的主成分,那么,第一和第二主成分為這些系數(shù)稱為主成分載荷(loading),它表示主成分和相應(yīng)的原先變量的相關(guān)系數(shù)。比如y1表示式中x1的系數(shù)為-0.806,這就是說第一主成分和數(shù)學(xué)變量的相關(guān)系數(shù)為-0.806。相關(guān)系數(shù)(絕對

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。