mathematica for Quantum mechanics.PDF

mathematica for Quantum mechanics.PDF

ID:34133936

大小:1.21 MB

頁數(shù):115頁

時間:2019-03-03

mathematica for Quantum mechanics.PDF_第1頁
mathematica for Quantum mechanics.PDF_第2頁
mathematica for Quantum mechanics.PDF_第3頁
mathematica for Quantum mechanics.PDF_第4頁
mathematica for Quantum mechanics.PDF_第5頁
資源描述:

《mathematica for Quantum mechanics.PDF》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫。

1、5QuantumMechanics5.1IntroductionQuantummechanicscomparedwithmechanicsisaveryyoungtheory.Thetheoryemergedat1900whenMaxPlanck(seeFigure5.1.1)examinedtheblackbodyradiationinthermodynamics.ThediscoverybyPlanckwasthattheblackbodyradiationcanbedescribedbyaunifiedrelationinterpolatin

2、gbetweenthehigh-frequencylimitproposedbyWienandthelow-frequencylimitfavoredbyRayleigh.ThemajorassumptionbyPlanckwasthattheenergyinthisrelationislinearinfrequencyanddiscreteHE=?wL.Planckbelievedthatthisquantizationappliedonlytotheabsorptionandemissionofenergybymatter,nottoelect

3、romagneticwavesthemselves.However,itturnedouttobemuchmoregeneralthanhecouldhaveimagined.5885.1IntroductionFigure5.1.1.MaxPlanck:bornApril23,1858;diedOctober4,1947.AnotheranchormaninquantummechanicswasErwinSchr?dinger(seeFigure5.1.2)whoinventedwavemechanicsin1926.Readingthethes

4、isofLouisdeBroglie,hewasinspiredtowritedownawaveequationwhichestablishedasecondapproachtomathematicallydescribequantummechanics.Figure5.1.2.ErwinSchr?dinger:bornAugust12,1887;diedJanuary4,1961.5.QuantumMechanics589ItwasWernerHeisenberg(seeFigure5.1.3)whofirstgaveasounddescript

5、ionofquantummechanicswithhismatrixmechanicsin1925.Heisenbergwasstudyingasetofquantizedprobabilityamplitudeswhenheusedamatrixalgebra.Theseamplitudesformedanoncommutativealgebra.ItwasMaxBornandJordaninG?ttingenwhorecognizedthisnoncommutativealgebratobeamatrixalgebra.Anotherfunda

6、mentalachievementbyHeisenbergin1927wastheuncertaintyprinciplewhichgovernsallquantummechanicalsystems.Figure5.1.3.WernerHeisenberg:bornDecember5,1901;diedFebruary1,1976.Today,quantummechanicsisacentraltheoryinphysicstodescribemicroandnanophenomenainatomicsystemsorsemiconductors

7、,forexample.Quantummechanicsinitsfield-theoreticextensionsisimportantindiscussionsoftheunificationoffundamentalforces.Theapplicationofquantummechanicsrangesfromnanosystemsuptolarge-scalesystemssuchasblackholes.Quantummechanicsis,intermsofitsapplication,bynomeansaself-contained

8、theory.Themajoropenquestioninquantumtheoryistheunificationwit

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。