《貝葉斯方法估計(jì)》PPT課件

ID:37387212

大小:808.10 KB

頁數(shù):62頁

時(shí)間:2019-05-11

《貝葉斯方法估計(jì)》PPT課件_第1頁
《貝葉斯方法估計(jì)》PPT課件_第2頁
《貝葉斯方法估計(jì)》PPT課件_第3頁
《貝葉斯方法估計(jì)》PPT課件_第4頁
《貝葉斯方法估計(jì)》PPT課件_第5頁
資源描述:

《《貝葉斯方法估計(jì)》PPT課件》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、第一節(jié)貝葉斯推斷方法第二節(jié)貝葉斯決策方法第十一章貝葉斯估計(jì)第一節(jié)貝葉斯推斷方法一、統(tǒng)計(jì)推斷中可用的三種信息美籍波蘭統(tǒng)計(jì)學(xué)家耐曼(E.L.Lehmann1894-1981)高度概括了在統(tǒng)計(jì)推斷中可用的三種信息:1.總體信息,即總體分布或所屬分布族給我們的信息。譬如“總體視察指數(shù)分布”或“總體是正態(tài)分布”在統(tǒng)計(jì)推斷中都發(fā)揮重要作用,只要有總體信息,就要想方設(shè)法在統(tǒng)計(jì)推斷中使用2.樣本信息,即樣本提供我們的信息,這是任一種統(tǒng)計(jì)推斷中都需要3.先驗(yàn)信息,即在抽樣之前有關(guān)統(tǒng)計(jì)推斷的一些信息。譬如,在估計(jì)某產(chǎn)品的不合格率時(shí),假如工廠保存了過去抽檢這種產(chǎn)品質(zhì)量的資料,

2、這些資料(包括歷史數(shù)據(jù))有時(shí)估計(jì)該產(chǎn)品的不合格率是有好處的。這些資料所提供的信息就是一種先驗(yàn)信息。又如某工程師根據(jù)自己多年積累的經(jīng)驗(yàn)對(duì)正在設(shè)計(jì)的某種彩電的平均壽命所提供的估計(jì)也是一種先驗(yàn)信息。由于這種信息是在“試驗(yàn)之前”就已有的,故稱為先驗(yàn)信息。以前所討論的點(diǎn)估計(jì)只使用前兩種信息,沒有使用先驗(yàn)信息。假如能把收集到的先驗(yàn)信息也利用起來,那對(duì)我們進(jìn)行統(tǒng)計(jì)推斷是有好處的。只用前兩種信息的統(tǒng)計(jì)學(xué)稱為經(jīng)典統(tǒng)計(jì)學(xué),三種信息都用的統(tǒng)計(jì)學(xué)稱為貝葉斯統(tǒng)計(jì)學(xué)。本節(jié)將簡(jiǎn)要介紹貝葉斯統(tǒng)計(jì)學(xué)中的點(diǎn)估計(jì)方法。二、貝葉斯公式的密度函數(shù)形式貝葉斯統(tǒng)計(jì)學(xué)的基礎(chǔ)是著名的貝葉斯公式,它是英國

3、學(xué)者貝葉斯(T.R.Bayes1702~1761)在他死后二年發(fā)表的一篇論文《論歸納推理的一種方法》中提出的。經(jīng)過二百年的研究與應(yīng)用,貝葉斯的統(tǒng)計(jì)思想得到很大的發(fā)展,目前已形成一個(gè)統(tǒng)計(jì)學(xué)派—貝葉斯學(xué)派。為了紀(jì)念他,英國歷史最悠久的統(tǒng)計(jì)雜志《Biometrika》在1958年又全文刊登貝葉斯的這篇論文。初等概率論中的貝葉斯公式是用事件的概率形式給出的??稍谪惾~斯統(tǒng)計(jì)學(xué)中應(yīng)用更多的是貝葉斯公式的密度函數(shù)形式。下面結(jié)合貝葉斯統(tǒng)計(jì)學(xué)的基本觀點(diǎn)來引出其密度函數(shù)形式。貝葉斯統(tǒng)計(jì)學(xué)的基本觀點(diǎn)可以用下面三個(gè)觀點(diǎn)歸納出來。假設(shè)Ⅰ隨機(jī)變量X有一個(gè)密度函數(shù)p(x;θ),其中θ

4、是一個(gè)參數(shù),不同的θ對(duì)應(yīng)不同的密度函數(shù),故從貝葉斯觀點(diǎn)看,p(x;θ)是在給定后θ是個(gè)條件密度函數(shù),因此記為p(x│θ)更恰當(dāng)一些。這個(gè)條件密度能提供我們的有關(guān)的θ信息就是總體信息。假設(shè)Ⅱ當(dāng)給定θ后,從總體p(x│θ)中隨機(jī)抽取一個(gè)樣本,該樣本中含有θ的有關(guān)信息。這種信息就是樣本信息。假設(shè)Ⅲ我們對(duì)參數(shù)θ已經(jīng)積累了很多資料,經(jīng)過分析、整理和加工,可以獲得一些有關(guān)θ的有用信息,這種信息就是先驗(yàn)信息。參數(shù)θ不是永遠(yuǎn)固定在一個(gè)值上,而是一個(gè)事先不能確定的量。從貝葉斯觀點(diǎn)來看,未知參數(shù)θ是一個(gè)隨機(jī)變量。而描述這個(gè)隨機(jī)變量的分布可從先驗(yàn)信息中歸納出來,這個(gè)分布稱為先

5、驗(yàn)分布,其密度函數(shù)用π(θ)表示。1先驗(yàn)分布定義3.1將總體中的未知參數(shù)θ∈Θ看成一取值于Θ的隨機(jī)變量,它有一概率分布,記為π(θ),稱為參數(shù)θ的先驗(yàn)分布。2后驗(yàn)分布在貝葉斯統(tǒng)計(jì)學(xué)中,把以上的三種信息歸納起來的最好形式是在總體分布基礎(chǔ)上獲得的樣本X1,…,Xn,和參數(shù)的聯(lián)合密度函數(shù)在這個(gè)聯(lián)合密度函數(shù)中。當(dāng)樣本給定之后,未知的僅是參數(shù)θ了,我們關(guān)心的是樣本給定后,θ的條件密度函數(shù),依據(jù)密度的計(jì)算公式,容易獲得這個(gè)條件密度函數(shù)這就是貝葉斯公式的密度函數(shù)形式,其中稱為θ的后驗(yàn)密度函數(shù),或后驗(yàn)分布。而是樣本的邊際分布,或稱樣本的無條件分布,它的積分區(qū)域就是參數(shù)θ

6、的取值范圍,隨具體情況而定。前面的分析總結(jié)如下:人們根據(jù)先驗(yàn)信息對(duì)參數(shù)θ已有一個(gè)認(rèn)識(shí),這個(gè)認(rèn)識(shí)就是先驗(yàn)分布π(θ)。通過試驗(yàn),獲得樣本。從而對(duì)θ的先驗(yàn)分布進(jìn)行調(diào)整,調(diào)整的方法就是使用上面的貝葉斯公式,調(diào)整的結(jié)果就是后驗(yàn)分布。后驗(yàn)分布是三種信息的綜合。獲得后驗(yàn)分布使人們對(duì)θ的認(rèn)識(shí)又前進(jìn)一步,可看出,獲得樣本的的效果是把我們對(duì)θ的認(rèn)識(shí)由π(θ)調(diào)整到。所以對(duì)θ的統(tǒng)計(jì)推斷就應(yīng)建立在后驗(yàn)分布的基礎(chǔ)上。如果此時(shí)我們對(duì)事件A的發(fā)生沒有任何了解,對(duì)的大小也沒有任何信息。在這種情況下,貝葉斯建議用區(qū)間(0,1)上的均勻分布作為的先驗(yàn)分布。因?yàn)樗冢?,1)上每一點(diǎn)都是機(jī)

7、會(huì)均等的。這個(gè)建議被后人稱為貝葉斯假設(shè)。例1設(shè)事件A的概率為,即。為了估計(jì)而作n次獨(dú)立觀察,其中事件出現(xiàn)次數(shù)為X,則有X服從二項(xiàng)分布即樣本X與參數(shù)的聯(lián)合分布為此式在定義域上與二項(xiàng)分布有區(qū)別。再計(jì)算X的邊際密度為即拉普拉斯計(jì)算過這個(gè)概率,研究男嬰的誕生比例是否大于0.5?如抽了251527個(gè)男嬰,女嬰241945個(gè)貝葉斯統(tǒng)計(jì)學(xué)首先要想方設(shè)法先去尋求θ的先驗(yàn)分布。先驗(yàn)分布的確定大致可分以下幾步:第一步,選一個(gè)適應(yīng)面較廣的分布族作先驗(yàn)分布族,使它在數(shù)學(xué)處理上方便一些,這里我們選用β分布族注:作為θ的先驗(yàn)分布族是恰當(dāng)?shù)?,從以下幾方面考慮:1參數(shù)θ是廢品率,它僅在

8、(0,1)上取值。因此,必需用區(qū)間(0,1)上的一個(gè)分布去擬合先驗(yàn)信息。β分布正

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。
关闭