基于動(dòng)態(tài)bp神經(jīng)網(wǎng)絡(luò)的預(yù)測方法及其應(yīng)用論文

基于動(dòng)態(tài)bp神經(jīng)網(wǎng)絡(luò)的預(yù)測方法及其應(yīng)用論文

ID:10617187

大?。?9.00 KB

頁數(shù):3頁

時(shí)間:2018-07-07

基于動(dòng)態(tài)bp神經(jīng)網(wǎng)絡(luò)的預(yù)測方法及其應(yīng)用論文_第1頁
基于動(dòng)態(tài)bp神經(jīng)網(wǎng)絡(luò)的預(yù)測方法及其應(yīng)用論文_第2頁
基于動(dòng)態(tài)bp神經(jīng)網(wǎng)絡(luò)的預(yù)測方法及其應(yīng)用論文_第3頁
資源描述:

《基于動(dòng)態(tài)bp神經(jīng)網(wǎng)絡(luò)的預(yù)測方法及其應(yīng)用論文》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、基于動(dòng)態(tài)BP神經(jīng)網(wǎng)絡(luò)的預(yù)測方法及其應(yīng)用論文摘要人工神經(jīng)網(wǎng)絡(luò)是一種新的數(shù)學(xué)建模方式,它具有通過學(xué)習(xí)逼近任意非線性映射的能力。本文提出了一種基于動(dòng)態(tài)BP神經(jīng)網(wǎng)絡(luò)的預(yù)測方法,闡述了其基本原理,并以典型實(shí)例驗(yàn)證。關(guān)鍵字神經(jīng)網(wǎng)絡(luò),BP模型,預(yù)測1引言在系統(tǒng)建模、辨識(shí)和預(yù)測中,對(duì)于線性系統(tǒng),在頻域.freelogorov定理,對(duì)于任意給定的L2型連續(xù)函數(shù)f:0,1n→Rm,f可以精確地用一個(gè)三層前向神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn),因而可以只考慮演化網(wǎng)絡(luò)的權(quán)值和結(jié)點(diǎn)數(shù)而不影響演化結(jié)果。基于此,在BP原有算法的基礎(chǔ)上,增加結(jié)點(diǎn)數(shù)演化因子,然后記錄每層因子各異時(shí)演化出的結(jié)構(gòu),最后選取最優(yōu)的因子及其網(wǎng)絡(luò)結(jié)構(gòu),這樣就可以

2、避免由于增加或剪枝得到的局部最優(yōu)。根據(jù)實(shí)驗(yàn)得知,不同的預(yù)測精度也影響網(wǎng)絡(luò)層神經(jīng)元的結(jié)點(diǎn)數(shù),所以可根據(jù)要求動(dòng)態(tài)地建立預(yù)測系統(tǒng)。具體步驟如下:(1)將輸入向量和目標(biāo)向量進(jìn)行歸一化處理。(2)讀取輸入向量、目標(biāo)向量,記錄輸入維數(shù)m、輸出層結(jié)點(diǎn)數(shù)n。(3)當(dāng)訓(xùn)練集確定之后,輸入層結(jié)點(diǎn)數(shù)和輸出層結(jié)點(diǎn)數(shù)隨之而確定,首先遇到的一個(gè)十分重要而又困難的問題是如何優(yōu)化隱層結(jié)點(diǎn)數(shù)和隱層數(shù)。實(shí)驗(yàn)表明,如果隱層結(jié)點(diǎn)數(shù)過少,網(wǎng)絡(luò)不能具有必要的學(xué)習(xí)能力和信息處理能力。反之,若過多,不僅會(huì)大大增加網(wǎng)絡(luò)結(jié)構(gòu)的復(fù)雜性(這一點(diǎn)對(duì)硬件實(shí)現(xiàn)的網(wǎng)絡(luò)尤其重要),網(wǎng)絡(luò)在學(xué)習(xí)過程中更易陷入局部極小點(diǎn),而且會(huì)使網(wǎng)絡(luò)的學(xué)習(xí)速度變得很慢。

3、隱層結(jié)點(diǎn)數(shù)的選擇問題一直受到神經(jīng)網(wǎng)絡(luò)研究工作者的高度重視。Gorman指出隱層結(jié)點(diǎn)數(shù)s與模式數(shù)N的關(guān)系是:s=log2N;Kolmogorov定理表明,隱層結(jié)點(diǎn)數(shù)s=2n+1(n為輸入層結(jié)點(diǎn)數(shù));而根據(jù)文獻(xiàn)7:s=sqrt(0.43mn+0.12nn+2.54m+0.77n+0.35)+0.517。(4)設(shè)置結(jié)點(diǎn)數(shù)演化因子a。為了快速建立網(wǎng)絡(luò),可以對(duì)其向量初始化,并從小到大排序4,7。(5)建立BP神經(jīng)網(wǎng)絡(luò)。隱含層傳遞函數(shù)用tansig,輸出層用logsig,訓(xùn)練函數(shù)采用動(dòng)態(tài)自適應(yīng)BP算法,并制訂停止準(zhǔn)則:目標(biāo)誤差精度以及訓(xùn)練代數(shù)。(6)初始化網(wǎng)絡(luò)。(7)訓(xùn)練網(wǎng)絡(luò)直到滿足停止判斷準(zhǔn)則

4、。(8)用測試向量對(duì)網(wǎng)絡(luò)進(jìn)行預(yù)測,并記錄誤差和逼近曲線,評(píng)估其網(wǎng)絡(luò)的適應(yīng)性。其適應(yīng)度函數(shù)采取規(guī)則化均方誤差函數(shù)。(9)轉(zhuǎn)到(5),選取下一個(gè)演化因子,動(dòng)態(tài)增加隱含層結(jié)點(diǎn)數(shù),直到最后得到最佳預(yù)測網(wǎng)絡(luò)。3基于神經(jīng)網(wǎng)絡(luò)的預(yù)測原理43.1正向建模正向建模是指訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)表達(dá)系統(tǒng)正向動(dòng)態(tài)的過程,這一過程建立的神經(jīng)網(wǎng)絡(luò)模型稱為正向模型,其結(jié)構(gòu)如圖3所示。其中,神經(jīng)網(wǎng)絡(luò)與待辨識(shí)的系統(tǒng)并聯(lián),兩者的輸出誤差用做網(wǎng)絡(luò)的訓(xùn)練信號(hào)。顯然,這是一個(gè)典型的有導(dǎo)師學(xué)習(xí)問題,實(shí)際系統(tǒng)作為教師,向神經(jīng)網(wǎng)絡(luò)提供算法所需要的期望輸出。當(dāng)系統(tǒng)是被控對(duì)象或傳統(tǒng)控制器時(shí),神經(jīng)網(wǎng)絡(luò)多采用多層前向網(wǎng)絡(luò)的形式,可直接選用BP網(wǎng)絡(luò)

5、或它的各種變形。而當(dāng)系統(tǒng)為性能評(píng)價(jià)器時(shí),則可選擇再勵(lì)學(xué)習(xí)算法,這時(shí)網(wǎng)絡(luò)既可以采用具有全局逼近能力的網(wǎng)絡(luò)(如多層感知器),也可選用具有局部逼近能力的網(wǎng)絡(luò)(如小腦模型控制器等)。圖3正向建模結(jié)構(gòu)3.2逆向建模建立動(dòng)態(tài)系統(tǒng)的逆模型,在神經(jīng)網(wǎng)絡(luò)中起著關(guān)鍵作用,并且得到了廣泛的應(yīng)用。其中,比較簡單的是直接逆建模法,也稱為廣義逆學(xué)習(xí)。其結(jié)構(gòu)如圖4所示,擬預(yù)報(bào)的系統(tǒng)輸出作為網(wǎng)絡(luò)的輸入,網(wǎng)絡(luò)輸出與系統(tǒng)輸入比較,相應(yīng)的輸入誤差用于訓(xùn)練,因而網(wǎng)絡(luò)將通過學(xué)習(xí)建立系統(tǒng)的逆模型。但是,如果所辨識(shí)的非線性系統(tǒng)是不可逆的,利用上述方法將得到一個(gè)不正確的逆模型。因此,在建立系統(tǒng)時(shí),可逆性應(yīng)該先有所保證。圖4直接逆建

6、模結(jié)構(gòu)4應(yīng)用實(shí)例分析以我國西南某地震常發(fā)地區(qū)的地震資料作為樣本來源,實(shí)現(xiàn)基于動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò)的地震預(yù)報(bào)。根據(jù)資料,提取出7個(gè)預(yù)報(bào)因子和實(shí)際發(fā)生的震級(jí)M作為輸入和目標(biāo)向量。預(yù)報(bào)因子為半年內(nèi)M=3的地震累計(jì)頻度、半年內(nèi)能量釋放積累值、b值、異常地震群個(gè)數(shù)、地震條帶個(gè)數(shù)、是否處于活動(dòng)期內(nèi)以及相關(guān)地震區(qū)地震級(jí)。在訓(xùn)練前,對(duì)數(shù)據(jù)進(jìn)行歸一化處理。由于輸入樣本為7維的輸入向量,一般情況下輸入層設(shè)7個(gè)神經(jīng)元。根據(jù)實(shí)際情況,輸出層神經(jīng)元個(gè)數(shù)為1。隱含層神經(jīng)元的傳遞函數(shù)為S型正切函數(shù),輸出層也可以動(dòng)態(tài)選擇傳遞函數(shù)。實(shí)例數(shù)據(jù)來自文獻(xiàn)4,將數(shù)據(jù)集分為訓(xùn)練集、測試集和確定集。表1中的7×7數(shù)組表示歸一化后的訓(xùn)練向

7、量,第一個(gè)7表示預(yù)報(bào)因子數(shù),第二個(gè)7表示樣本數(shù)。表1歸一化后的訓(xùn)練向量在不同神經(jīng)元數(shù)情況下,對(duì)網(wǎng)絡(luò)進(jìn)行訓(xùn)練和仿真,得到如圖5所示的一組預(yù)測誤差曲線。其中,曲線A表示隱層結(jié)點(diǎn)數(shù)為6時(shí)的預(yù)測誤差曲線,曲線B表示隱含層結(jié)點(diǎn)數(shù)為3時(shí)的預(yù)測誤差曲線,曲線C表示隱含層結(jié)點(diǎn)數(shù)為5時(shí)的預(yù)測誤差曲線,曲線D表示隱含層結(jié)點(diǎn)數(shù)為4時(shí)的預(yù)測誤差曲線。將五種情況下的誤差進(jìn)行對(duì)比,曲線C表示的網(wǎng)絡(luò)預(yù)測性能最好,其隱含層神經(jīng)元數(shù)為5,圖中曲線E表示的是隱含層結(jié)點(diǎn)數(shù)為15時(shí)的預(yù)測誤差曲線

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。