資源描述:
《2012考研必看:最給力的考研數(shù)學高分滿分經(jīng)驗匯總!》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫。
1、2012考研必看:最給力的考研數(shù)學高分滿分經(jīng)驗匯總!很多考生對數(shù)學的復(fù)習不是有很清晰的認識,其實現(xiàn)在可以真正的開始了第一輪的復(fù)習。在第一輪的復(fù)習中有以下四大框架可以推薦給廣大考生。1.注意基本概念、基本方法和基本定理的復(fù)習掌握結(jié)合考研輔導(dǎo)書和大綱,先吃透基本概念、基本方法和基本定理,只有對基本概念深入理解,對基本定理和公式牢牢記住,才能找到解題的突破口和切入點。分析表明,考生失分的一個重要原因就是對基本概念、基本定理,理解不準確,基本解題方法沒有掌握。因此,首輪復(fù)習必須在掌握和理解數(shù)學基本概念、基本定理、重要的數(shù)學原理、重要的數(shù)學結(jié)論等數(shù)學
2、基本要素上下足工夫,如果不打牢這個基礎(chǔ),其他一切都是空中樓閣。2.加強練習,充分利用歷年真題,重視總結(jié)、歸納解題思路、方法和技巧數(shù)學考試的所有任務(wù)就是解題,而基本概念、公式、結(jié)論等也只有在反復(fù)練習中才能真正理解和鞏固。試題千變?nèi)f化,但其知識結(jié)構(gòu)卻基本相同,題型也相對固定,一般存在相應(yīng)的解題規(guī)律。通過大量的訓(xùn)練可以切實提高數(shù)學的解題能力,做到面對任何試題都能有條不紊地分析和運算。3.開始進行綜合試題和應(yīng)用試題的訓(xùn)練數(shù)學考試中有一些應(yīng)用到多個知識點的綜合性試題和應(yīng)用型試題。這類試題一般比較靈活,難度相對較大。在首輪復(fù)習期間,雖然它們不是重點,但
3、也應(yīng)有目的地進行一些訓(xùn)練,積累解題經(jīng)驗,這也有利于對所學知識的消化吸收,徹底弄清有關(guān)知識的縱向與橫向聯(lián)系,轉(zhuǎn)化為自己的東西。4.突出重點···名家
4、李陽:我的退休聲明-李陽時代結(jié)束心理
5、心靈安全島:身高阻擋了我們的愛分享
6、BBC:英國參加電視選秀的親身經(jīng)歷高等數(shù)學是考研數(shù)學的重中之重,所占分值較大,需要復(fù)習的內(nèi)容也比較多。主要內(nèi)容有:1)函數(shù)、極限與連續(xù):主要考查分段函數(shù)極限或已知極限確定原式中的常數(shù);討論函數(shù)連續(xù)性和判斷間斷點類型;無窮小階的比較;討論連續(xù)函數(shù)在給定區(qū)間上零點的個數(shù)或確定方程在給定區(qū)間上有無實根。2)一元函數(shù)微分學:主要考
7、查導(dǎo)數(shù)與微分的求解;隱函數(shù)求導(dǎo);分段函數(shù)和絕對值函數(shù)可導(dǎo)性;洛比達法則求不定式極限;函數(shù)極值;方程的根;證明函數(shù)不等式;羅爾定理、拉格朗日中值定理、柯西中值定理以及輔助函數(shù)的構(gòu)造;最大值、最小值在物理、經(jīng)濟等方面實際應(yīng)用;用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。3)一元函數(shù)積分學:主要考查不定積分、定積分及廣義積分的計算;變上限積分的求導(dǎo)、極限等;積分中值定理和積分性質(zhì)的證明題;定積分的應(yīng)用,如計算旋轉(zhuǎn)面面積、旋轉(zhuǎn)體體積、變力作功等。4)多元函數(shù)微分學:主要考查偏導(dǎo)數(shù)存在、可微、連續(xù)的判斷;多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)、方向?qū)?/p>
8、數(shù);多元函數(shù)極值或條件極值在與經(jīng)濟上的應(yīng)用;二元連續(xù)函數(shù)在有界平面區(qū)域上的最大值和最小值。6)多元函數(shù)的積分學:包括二重積分在各種坐標下的計算,累次積分交換次序;7)微分方程及差分方程:主要考查一階微分方程的通解或特解;二階線性常系數(shù)齊次和非齊次方程的特解或通解;微分方程的建立與求解。差分方程的基本概念與一介常系數(shù)線形方程求解方法跨章節(jié)、跨科目的綜合考查題,近幾年出現(xiàn)的有:微積分與微分方程的綜合題;求極限的綜合題等。線性代數(shù)的重要概念包括以下內(nèi)容:代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型
9、),等價(矩陣、向量組),線性組合與線性表出,線性相關(guān)與線性無關(guān),極大線性無關(guān)組,基礎(chǔ)解系與通解,解的結(jié)構(gòu)與解空間,特征值與特征向量,相似與相似對角化。線性代數(shù)的內(nèi)容縱橫交錯,環(huán)環(huán)相扣,知識點之間相互滲透很深,因此不僅出題角度多,而且解題方法也是靈活多變,需要在夯實基礎(chǔ)的前提下大量練習,歸納總結(jié)。概率論與數(shù)理統(tǒng)計是考研數(shù)學中的難點,考生得分率普遍較低。與微積分和線性代數(shù)不同的是,概率論與數(shù)理統(tǒng)計并不強調(diào)解題方法,也很少涉及解題技巧,而非常強調(diào)對基本概念、定理、公式的深入理解。其考點如下:1)隨機事件和概率:包括樣本空間與隨機事件;概率的定義
10、與性質(zhì)(含古典概型、幾何概型、加法公式);條件概率與概率的乘法公式;事件之間的關(guān)系與運算(含事件的獨立性);全概公式與貝葉斯公式;伯努利概型。2)隨機變量及其概率分布:包括隨機變量的概念及分類;離散型隨機變量概率分布及其性質(zhì);連續(xù)型隨機變量概率密度及其性質(zhì);隨機變量分布函數(shù)及其性質(zhì);常見分布;隨機變量函數(shù)的分布。3)二維隨機變量及其概率分布:包括多維隨機變量的概念及分類;二維離散型隨機變量聯(lián)合概率分布及其性質(zhì);二維連續(xù)型隨機變量聯(lián)合概率密度及其性質(zhì);二維隨機變量聯(lián)合分布函數(shù)及其性質(zhì);二維隨機變量的邊緣分布和條件分布;隨機變量的獨立性;兩個隨
11、機變量的簡單函數(shù)的分布。4)隨機變量的數(shù)字特征:隨機變量的數(shù)字期望的概念與性質(zhì);隨機變量的方差的概念與性質(zhì);常見分布的數(shù)字期望與方差;隨機變量矩、協(xié)方差和相關(guān)系數(shù)。5)大數(shù)定律和