資源描述:
《3.3多維隨機(jī)變量函數(shù)的分布(3.3 distribution of functions of multidimensional random variables)》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、3.3多維隨機(jī)變量函數(shù)的分布(3.3distributionoffunctionsofmultidimensionalrandomvariables)版權(quán).楊ning-guang.2010。版權(quán)所有1§3.1多維隨機(jī)變量及其聯(lián)合分布3.2邊際分布與隨機(jī)變量的獨(dú)立性§3.3多維隨機(jī)變量函數(shù)的分布§3.4多維隨機(jī)變量的特征數(shù)§§3.5條件分布與條件數(shù)學(xué)期望§3.3多維隨機(jī)變量函數(shù)的分布版權(quán)。楊ning-guang.2010。版權(quán)所有。2回顧(2)連續(xù)型已知X(),XPX要求y=F(x)()分布密度YPY要求y=f(x)分布律(1)離散型
2、已知X,kp1,2,一維隨機(jī)變量函數(shù)的分布(K)yfx{}我{()}fx我{}YXC{
3、()}YCxfx我其中一維連續(xù)型隨機(jī)變量函數(shù)的分布的方法分布函數(shù)法、定理法本節(jié)的主要問(wèn)題是已知x,y)的聯(lián)合分布而(,)ZGXYZ的分布求?!?.3多維隨機(jī)變量函數(shù)的分布版權(quán)。楊ning-guang.2010。版權(quán)所有。33.3.1多維離散隨機(jī)變量函數(shù)的分布要求Z=G(x,y)分布律已知(,),ijxYP,1,2,我性質(zhì)1泊松分布的可加性離散型的卷積公式設(shè)X,Y獨(dú)立且z=x+yX,Y0,1,‥(Z
4、)PK0,1,2,K0()()KIPXIPYK我()PXYK0(,)KIP我YK我設(shè)且X,Y獨(dú)立則12(),(),XPYP12()zxyp記作1212()()()PPP推廣:設(shè)12,…,X獨(dú)立且(NX),1,2,,我九PIN則11()n我我我即IXP1212()()()()NNPPPP§3.3多維隨機(jī)變量函數(shù)的分布版權(quán)。楊ning-guang.2010。版權(quán)所有。4性質(zhì)2二項(xiàng)分布的可加性設(shè)且X,Y獨(dú)立則(,)、(,)
5、,XYBBPMP(,)ZXYBNMP記作(,)(,)(,)BNPBMPBNMP推廣:設(shè)12,…,KX××獨(dú)立且(,),1,2,,我九BNPK我則11(,)K我我我九BNP即1212(,)(,)(,)(,)KKBNPBPBPBNNNP特別地(1,)(1)(1,)(,)BPBPBPBPN個(gè)§3.3多維隨機(jī)變量函數(shù)的分布版權(quán)。楊ning-guang.2010。版權(quán)所有。53.3.2最大值與最小值分布設(shè)XY是兩個(gè)相互獨(dú)立的隨機(jī)變量它們的分布函數(shù)分別為FX(
6、x)和FY(Y),我們來(lái)求Z=max(X,Y)及T=min(x,y)的分布函數(shù)。1求Z=max(X,Y)的分布函數(shù)ZFZ()()PZ(max(,))Pxyz(,)Pxyz()()XYFZFz2求T=min(x,y)()()的分布函數(shù)TFTPTT(min(,))PXYT1(min(,))PXYT1(,)PxTYT1(1())(1())XYFTF§3.3多維隨機(jī)變量函數(shù)的分布版權(quán)。楊ning-guang.2010。版權(quán)所有。63.3.3連續(xù)型隨機(jī)向量函數(shù)的分布已知(,)(,),X、Y、PXY
7、要求Z=G(x,y)分布密度ZPZ方法一分布函數(shù)法()。①求分布函數(shù)ZFZ?。ǎǎ㏄Z((,))PGXYZ{(,)}ZPxyd②求密度函數(shù)()()ZFZPZZ(,)dxdyZDPxy{}PZ我{(,)}PGXY我{(,)}ZPXYD(,)ZDPxydxdy§3.3多維隨機(jī)變量函數(shù)的分布版權(quán)。楊ning-guang.2010。版權(quán)所有。7((,))zZPxydyDXinixga則22212nyxxx(1,);ga特別地注意到xp()e2()n1(
8、,)22nga(,)go,go,go,gon從而1()()()expexpexpn個(gè)121(,)22mnnngo,go,go,go22221(2)()()mnnn2()n21(2)mnnn§3.3多維隨機(jī)變量函數(shù)的分布copyright.yangning-guang.2010.allrightsreserved.13方法二定理法有連續(xù)偏導(dǎo)、存在反函數(shù)定理若12(,)(,)ugxyvgxy(,)(,)xxuvyy,u,v則(u,
9、v)的聯(lián)合密度為(,)((,),(,))
10、
11、uvxypuvx,vyupuvj其中j為變換的雅可比行列式1(,)(,)(,0)(,)(,)xxx,y,u,vuv