chapter linear regression models with dependent observations

chapter linear regression models with dependent observations

ID:12799538

大?。?80.00 KB

頁數(shù):30頁

時間:2018-07-19

chapter  linear regression models with dependent observations_第1頁
chapter  linear regression models with dependent observations_第2頁
chapter  linear regression models with dependent observations_第3頁
chapter  linear regression models with dependent observations_第4頁
chapter  linear regression models with dependent observations_第5頁
資源描述:

《chapter linear regression models with dependent observations》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫

1、CHAPTER5LINEARREGRESSIONMODELSWITHDEPENDENTOBSERVATIONSCHAWPTER5LINEARREGRESSIONMODELSITHDEPENDENTOBSERVATIONSKeywords:Ergodicity,Martingaledierencesequence,Randomwalk,Serialcorrelation,Stationarity,Unitroot,Whitenoise.Remark:Theasymptotictheorydevelopedaboveisapplicableforcross-sectionaldata(be

2、-causeofthei.i.d.randomsampleassumption).Whathappensifwehaveatimeseriesdata?MotivationConsiderYt=0+1Yt1+;t;;tisi.i.d.N(0,2):Here,Xt=(1;Yt1).WehaveE(;tjXt)=0butwedonothaveE(;tjX)=E(;tjX1;X2;:::;Xn)=0:Remark:Thei.i.d.assumptionrulesouttimeseriesdata.Mosteconomicandnancialdataaretimeseriesobservati

3、ons.Question:Underwhatconditionswilltheasymptotictheorydevelopedinthepreviouschaptercarryovertolinearregressionmodelswithdependentobservations?BasicConceptsinTimeSeriesQuestion:Whatisatimeseriesprocess?Denition[StochasticTimeSeriesProcess]:AstochastictimeseriesfZtgisasequenceofrandomvariablesorr

4、andomvectorsindexedbytimetandgovernedbysomeprobabilitylaw(;F;P);whereisthesamplespace,Fisa-eld,andPisaprobabilitymeasure,withP:F![0;1]:Remarks:1(i)Moreprecisely,wecanwriteZt=Z(t;!);where!2isabasicoutcomeinsamplespace.Foreach!;wecanobtainasamplepathZ(t;!)ofZtasadeterministicfunctionoftimet:Dieren

5、t!swillgivedierentsamplepaths.(ii)ThedynamicsoffZtgiscompletelydeterminedbythetransitionprobabilityofZt;thatis,theconditionalprobabilityofZtgivenitspasthistory.Randomsample:Considerasubset(orasegment)ofadiscretetimeseriesprocessfZtgfort=1;;n:Thisiscalledatimeseriesrandomsampleofsizen;denotedasZn

6、=fZ1;;Zng0:Anyrealizationofthisrandomsampleisadataset,denotedaszn=fz1;;zng0:Question:WhycanthedynamicsoffZtgbecompletelycapturedbyitstransitionprobability?ConsiderarandomsampleZn:Itiswell-knownfrombasicstatisticscoursesthatthejointprobabilityoftherandomsampleZn;fZn(zn)=fZ1;Z2;:::;Zn(z1;z2;:::;zn

7、);zn2Rn;completelycapturesallthesampleinformationcontainedinZn.WithfZn(zn);wecanobtainthesamplingdistributionofanystatistic(e.g.,samplemean,samplevariance,condenceinterval)thatisbasedonZn:Now,putIt=fZt;Zt1;;Z1g,theinformatio

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。