an introduction to probability theory - geiss

an introduction to probability theory - geiss

ID:15026138

大?。?38.94 KB

頁數(shù):71頁

時間:2018-07-31

an introduction to probability theory - geiss_第1頁
an introduction to probability theory - geiss_第2頁
an introduction to probability theory - geiss_第3頁
an introduction to probability theory - geiss_第4頁
an introduction to probability theory - geiss_第5頁
資源描述:

《an introduction to probability theory - geiss》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、AnintroductiontoprobabilitytheoryChristelGeissandStefanGeissFebruary19,20042Contents1Probabilityspaces71.1De?nitionofσ-algebras......................81.2Probabilitymeasures.......................121.3Examplesofdistributions....................201.3.1Binomialdistribution

2、withparameter00.......211.3.3Geometricdistributionwithparameter00......................221.3.6Exponentialdist

3、ributiononRwithparameterλ>0.221.3.7Poisson’sTheorem....................241.4AsetwhichisnotaBorelset..................252Randomvariables292.1Randomvariables.........................292.2Measurablemaps.........................312.3Independence...........................35

4、3Integration393.1De?nitionoftheexpectedvalue.................393.2Basicpropertiesoftheexpectedvalue..............423.3ConnectionstotheRiemann-integral..............483.4Changeofvariablesintheexpectedvalue............493.5Fubini’sTheorem.........................513.6Some

5、inequalities.........................584Modesofconvergence634.1De?nitions.............................634.2Someapplications.........................6434CONTENTSIntroductionThemodernperiodofprobabilitytheoryisconnectedwithnameslikeS.N.Bernstein(1880-1968),E.Borel(1871-19

6、56),andA.N.Kolmogorov(1903-1987).Inparticular,in1933A.N.Kolmogorovpublishedhismodernap-proachofProbabilityTheory,includingthenotionofameasurablespaceandaprobabilityspace.Thislecturewillstartfromthisnotion,tocontinuewithrandomvariablesandbasicpartsofintegrationtheory,and

7、to?nishwithsome?rstlimittheorems.Thelectureisbasedonamathematicalaxiomaticapproachandisintendedforstudentsfrommathematics,butalsoforotherstudentswhoneedmoremathematicalbackgroundfortheirfurtherstudies.WeassumethattheintegrationwithrespecttotheRiemann-integralontherealli

8、neisknown.Theapproach,wefollow,seemstobeinthebeginningmoredi?cult.Butonceonehasasolidbasis,manythingswillbeeas

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。