數(shù)據(jù)挖掘十大算法

數(shù)據(jù)挖掘十大算法

ID:15553521

大?。?83.19 KB

頁數(shù):37頁

時(shí)間:2018-08-04

數(shù)據(jù)挖掘十大算法_第1頁
數(shù)據(jù)挖掘十大算法_第2頁
數(shù)據(jù)挖掘十大算法_第3頁
數(shù)據(jù)挖掘十大算法_第4頁
數(shù)據(jù)挖掘十大算法_第5頁
資源描述:

《數(shù)據(jù)挖掘十大算法》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、KnowlInfSyst(2008)14:137DOI10.1007/s10115-007-0114-2SURVEYPAPERTop10algorithmsindataminingXindongWu·VipinKumar·J.RossQuinlan·JoydeepGhosh·QiangYang·HiroshiMotoda·GeoffreyJ.McLachlan·AngusNg·BingLiu·PhilipS.Yu·Zhi-HuaZhou·MichaelSteinbach·DavidJ.Hand·DanS

2、teinbergReceived:9July2007/Revised:28September2007/Accepted:8October2007Publishedonline:4December2007?Springer-VerlagLondonLimited2007AbstractThispaperpresentsthetop10dataminingalgorithmsidenti?edbytheIEEEInternationalConferenceonDataMining(ICDM)inDecemb

3、er2006:C4.5,k-Means,SVM,Apriori,EM,PageRank,AdaBoost,kNN,NaiveBayes,andCART.Thesetop10algorithmsareamongthemostin?uentialdataminingalgorithmsintheresearchcommunity.Witheachalgorithm,weprovideadescriptionofthealgorithm,discusstheimpactofthealgorithm,andre

4、viewcurrentandfurtherresearchonthealgorithm.These10algorithmscoverclassi?cation,X.Wu(B)DepartmentofComputerScience,UniversityofVermont,Burlington,VT,USAe-mail:xwu@cs.uvm.eduV.KumarDepartmentofComputerScienceandEngineering,UniversityofMinnesota,Minneapoli

5、s,MN,USAe-mail:kumar@cs.umn.eduJ.RossQuinlanRulequestResearchPtyLtd,StIves,NSW,Australiae-mail:quinlan@rulequest.comJ.GhoshDepartmentofElectricalandComputerEngineering,UniversityofTexasatAustin,Austin,TX78712,USAe-mail:ghosh@ece.utexas.eduQ.YangDepartmen

6、tofComputerScience,HongKongUniversityofScienceandTechnology,Honkong,Chinae-mail:qyang@cs.ust.hkH.MotodaAFOSR/AOARDandOsakaUniversity,7-23-17Roppongi,Minato-ku,Tokyo106-0032,Japane-mail:motoda@ar.sanken.osaka-u.ac.jp1232X.Wuetal.clustering,statisticallear

7、ning,associationanalysis,andlinkmining,whichareallamongthemostimportanttopicsindataminingresearchanddevelopment.0IntroductionInanefforttoidentifysomeofthemostin?uentialalgorithmsthathavebeenwidelyusedinthedataminingcommunity,theIEEEInternationalConferenc

8、eonDataMining(ICDM,http://www.cs.uvm.edu/~icdm/)identi?edthetop10algorithmsindataminingforpresen-tationatICDM06inHongKong.Asthe?rststepintheidenti?cationprocess,inSeptember2006weinvitedtheACMKDDInnovationAwardandIEEEICDMRe

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。