神經(jīng)網(wǎng)絡(luò)算法bp網(wǎng)絡(luò)的訓練函數(shù)

神經(jīng)網(wǎng)絡(luò)算法bp網(wǎng)絡(luò)的訓練函數(shù)

ID:1594366

大?。?24.00 KB

頁數(shù):5頁

時間:2017-11-12

神經(jīng)網(wǎng)絡(luò)算法bp網(wǎng)絡(luò)的訓練函數(shù)_第1頁
神經(jīng)網(wǎng)絡(luò)算法bp網(wǎng)絡(luò)的訓練函數(shù)_第2頁
神經(jīng)網(wǎng)絡(luò)算法bp網(wǎng)絡(luò)的訓練函數(shù)_第3頁
神經(jīng)網(wǎng)絡(luò)算法bp網(wǎng)絡(luò)的訓練函數(shù)_第4頁
神經(jīng)網(wǎng)絡(luò)算法bp網(wǎng)絡(luò)的訓練函數(shù)_第5頁
資源描述:

《神經(jīng)網(wǎng)絡(luò)算法bp網(wǎng)絡(luò)的訓練函數(shù)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、BP網(wǎng)絡(luò)的訓練函數(shù)訓練方法訓練函數(shù)梯度下降法traingd有動量的梯度下降法traingdm自適應(yīng)lr梯度下降法traingda自適應(yīng)lr動量梯度下降法traingdx彈性梯度下降法trainrpFletcher-Reeves共軛梯度法traincgfPloak-Ribiere共軛梯度法traincgpPowell-Beale共軛梯度法traincgb量化共軛梯度法trainscg擬牛頓算法trainbfg一步正割算法trainossLevenberg-MarquardttrainlmBP網(wǎng)絡(luò)訓練參數(shù)訓練參數(shù)參數(shù)介紹訓練函數(shù)net.trainParam.epochs最大訓

2、練次數(shù)(缺省為10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.goal訓練要求精度(缺省為0)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.lr學習率(缺省為0.01)traingd、tra

3、ingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.max_fail最大失敗次數(shù)(缺省為5)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.min_grad最小梯度要求(缺省為1e-10)traingd、traingdm、t

4、raingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.show顯示訓練迭代過程(NaN表示不顯示,缺省為25)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.time最大訓練時間(缺省為inf)traingd、traingdm、traing

5、da、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.mc動量因子(缺省0.9)traingdm、traingdxnet.trainParam.lr_inc學習率lr增長比(缺省為1.05)traingda、traingdxnet.trainParam.lr_dec學習率lr下降比(缺省為0.7)traingda、traingdxnet.trainParam.max_perf_inc表現(xiàn)函數(shù)增加最大比(缺省為1.04)traingda、

6、traingdxnet.trainParam.delt_inc權(quán)值變化增加量(缺省為1.2)trainrpnet.trainParam.delt_dec權(quán)值變化減小量(缺省為0.5)trainrpnet.trainParam.delt0初始權(quán)值變化(缺省為0.07)trainrpnet.trainParam.deltamax權(quán)值變化最大值(缺省為50.0)trainrpnet.trainParam.searchFcn一維線性搜索方法(缺省為srchcha)traincgf、traincgp、traincgb、trainbfg、trainossnet.trainParam.

7、sigma因為二次求導對權(quán)值調(diào)整的影響參數(shù)(缺省值5.0e-5)trainscgnet.trainParam.lambdaHessian矩陣不確定性調(diào)節(jié)參數(shù)(缺省為5.0e-7)trainscgnet.trainParam.men_reduc控制計算機內(nèi)存/速度的參量,內(nèi)存較大設(shè)為1,否則設(shè)為2(缺省為1)trainlmnet.trainParam.mu的初始值(缺省為0.001)trainlmnet.trainParam.mu_dec的減小率(缺省為0.1)trainlmnet.trainParam.mu_inc的增長率(缺

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。