資源描述:
《對數(shù)函數(shù)和其性質(zhì)(1)》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
1、對數(shù)函數(shù)及其性質(zhì)(1)一、教材分析本小節(jié)選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-數(shù)學(xué)必修(一)》(人教版)第二章基本初等函數(shù)(1)2.2.2對數(shù)函數(shù)及其性質(zhì)(第一課時(shí)),主要內(nèi)容是學(xué)習(xí)對數(shù)函數(shù)的定義、圖象、性質(zhì)及初步應(yīng)用。對數(shù)函數(shù)是繼指數(shù)函數(shù)之后的又一個(gè)重要初等函數(shù),無論從知識或思想方法的角度對數(shù)函數(shù)與指數(shù)函數(shù)都有許多類似之處。與指數(shù)函數(shù)相比,對數(shù)函數(shù)所涉及的知識更豐富、方法更靈活,能力要求也更高。學(xué)習(xí)對數(shù)函數(shù)是對指數(shù)函數(shù)知識和方法的鞏固、深化和提高,也為解決函數(shù)綜合問題及其在實(shí)際上的應(yīng)用奠定良好的基礎(chǔ)。雖然這個(gè)內(nèi)容十分熟悉,但新教材做了一定的改動,如何設(shè)計(jì)能夠符合新課標(biāo)理念
2、,是人們十分關(guān)注的,正因如此,本人選擇這課題立求某些方面有所突破。二、學(xué)生學(xué)習(xí)情況分析剛從初中升入高一的學(xué)生,仍保留著初中生許多學(xué)習(xí)特點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,又以對數(shù)運(yùn)算為基礎(chǔ),同時(shí),初中函數(shù)教學(xué)要求降低,初中生運(yùn)算能力有所下降,這雙重問題增加了對數(shù)函數(shù)教學(xué)的難度。教師必須認(rèn)識到這一點(diǎn),教學(xué)中要控制要求的拔高,關(guān)注學(xué)習(xí)過程。三、設(shè)計(jì)理念本節(jié)課以建構(gòu)主義基本理論為指導(dǎo),以新課標(biāo)基本理念為依據(jù)進(jìn)行設(shè)計(jì)的,針對學(xué)生的學(xué)習(xí)背景,對數(shù)函數(shù)的教學(xué)首先要挖掘其知識背景貼近學(xué)生實(shí)際,其次,激發(fā)學(xué)生的學(xué)習(xí)熱情,把學(xué)習(xí)的主動權(quán)交
3、給學(xué)生,為他們提供自主探究、合作交流的機(jī)會,確實(shí)改變學(xué)生的學(xué)習(xí)方式。四、教學(xué)目標(biāo)1.通過具體實(shí)例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;2.能借助計(jì)算器或計(jì)算機(jī)畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn);3.通過比較、對照的方法,引導(dǎo)學(xué)生結(jié)合圖象類比指數(shù)函數(shù),探索研究對數(shù)函數(shù)的性質(zhì),培養(yǎng)學(xué)生運(yùn)用函數(shù)的觀點(diǎn)解決實(shí)際問題。五、教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn)是掌握對數(shù)函數(shù)的圖象和性質(zhì),難點(diǎn)是底數(shù)對對數(shù)函數(shù)值變化的影響.六、教學(xué)過程設(shè)計(jì)教學(xué)流程:背景材料→引出課題→函數(shù)圖象→函數(shù)性質(zhì)→問題解決→歸納小結(jié)(一)熟悉背景
4、、引入課題1.讓學(xué)生看材料:材料1(幻燈):馬王堆女尸千年不腐之謎:一九七二年,馬王堆考古發(fā)現(xiàn)震驚世界,專家發(fā)掘西漢辛追遺尸時(shí),形體完整,全身潤澤,皮膚仍有彈性,關(guān)節(jié)還可以活動,骨質(zhì)比現(xiàn)在六十歲的正常人還好,是世界上發(fā)現(xiàn)的首例歷史悠久的濕尸。大家知道,世界發(fā)現(xiàn)的不腐之尸都是在干燥的環(huán)境風(fēng)干而成,譬如沙漠環(huán)境,這類干尸雖然肌膚未腐,是因?yàn)楦稍锊焕?xì)菌繁殖,但關(guān)節(jié)和一般人死后一樣,是僵硬的,而馬王堆辛追夫人卻是在濕潤的環(huán)境中保存二千多年,而且關(guān)節(jié)可以活動。人們最關(guān)注有兩個(gè)問題,第一:怎么鑒定尸體的年份?第二:是什么環(huán)境使尸體未腐?其中第一個(gè)問題與數(shù)學(xué)有關(guān)。圖4—1(如圖4—
5、1在長沙馬王堆“沉睡”近2200年的古長沙國丞相夫人辛追,日前奇跡般地“復(fù)活”了)那么,考古學(xué)家是怎么計(jì)算出古長沙國丞相夫人辛追“沉睡”近2200年?上面已經(jīng)知道考古學(xué)家是通過提取尸體的殘留物碳14的殘留量p,利用估算尸體出土的年代,不難發(fā)現(xiàn):對每一個(gè)碳14的含量的取值,通過這個(gè)對應(yīng)關(guān)系,生物死亡年數(shù)t都有唯一的值與之對應(yīng),從而t是P的函數(shù);如圖4—2材料2(幻燈):某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè)……,如果要求這種細(xì)胞經(jīng)過多少次分裂,大約可以得到細(xì)胞1萬個(gè),10萬個(gè)……,不難發(fā)現(xiàn):分裂次數(shù)y就是要得到的細(xì)胞個(gè)數(shù)x的函數(shù),即;圖4—21.引導(dǎo)學(xué)生觀察這些
6、函數(shù)的特征:含有對數(shù)符號,底數(shù)是常數(shù),真數(shù)是變量,從而得出對數(shù)函數(shù)的定義:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).注意:對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別.如:,都不是對數(shù)函數(shù).對數(shù)函數(shù)對底數(shù)的限制:,且.3.根據(jù)對數(shù)函數(shù)定義填空;例1(1)函數(shù)y=logax2的定義域是___________(其中a>0,a≠1)(2)函數(shù)y=loga(4-x)的定義域是___________(其中a>0,a≠1)說明:本例主要考察對數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對概念的理解,所以把教材中的解答題改為填空題,節(jié)省時(shí)間,點(diǎn)到為止,以避免挖深
7、、拓展、引入復(fù)合函數(shù)的概念。[設(shè)計(jì)意圖:新課標(biāo)強(qiáng)調(diào)“考慮到多數(shù)高中生的認(rèn)知特點(diǎn),為了有助于他們對函數(shù)概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問題入手”。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個(gè)材料引出對數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識背景,初步感受對數(shù)函數(shù)是刻畫現(xiàn)實(shí)世界的又一重要數(shù)學(xué)模型。這樣處理,對數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)](二)嘗試畫圖、形成感知1.確定探究問題教師:當(dāng)我們知道對數(shù)函數(shù)的定義之后,緊接著需要探討什么問題?學(xué)生1:對數(shù)函數(shù)的圖象和性質(zhì)教師:你能類比前面研究指數(shù)函數(shù)的思路,提