資源描述:
《基于改進(jìn)bp神經(jīng)網(wǎng)絡(luò)的圍巖自穩(wěn)能力評估模型》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、基于改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的圍巖自穩(wěn)能力評估模型摘要:指揮防護(hù)工程是國家防護(hù)工程體系的重要組成部分。為提高其建設(shè)水平,采用改進(jìn)的前饋(bp)神經(jīng)網(wǎng)絡(luò),對指揮防護(hù)工程圍巖自穩(wěn)能力進(jìn)行評估。結(jié)合指揮防護(hù)工程圍巖的特點,設(shè)計評估網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)。針對bp網(wǎng)絡(luò)原始模型的缺陷改進(jìn),引入動量項、自適應(yīng)調(diào)節(jié)學(xué)習(xí)率、陡度因子、可變隱層節(jié)點等,并采用遺傳算法(ga)尋找最優(yōu)的初始權(quán)值和閾值。最后結(jié)合實例對算法進(jìn)行驗證。結(jié)果表明,該模型科學(xué)可靠,具有較好的工程應(yīng)用價值。關(guān)鍵詞:前饋神經(jīng)網(wǎng)絡(luò);遺傳算法;評估;圍巖;自穩(wěn)能力;指揮防護(hù)工程self.stabilityevaluationmodelofsurr
2、oundingrockbasedonimprovedbpneuralnetworkwangduo.dian1,2*,qiuguo.qing1,daiting.ting3,wangyue11.engineeringinstituteofcorpsofengineers,plauniversityofscienceandtechnology,nanjingjiangsu210007,china;2.unit66081ofpla,huailaihebei050083,china;3.chinasatellitemaritimetrackingandcont
3、rollingdepartment,jiangyinjiangsu214431,chinaabstract:commandprotectionengineeringistheimportantcomponentofnationalprotectionengineeringsystem.toraisethelevelofconstructionofcommandprotectionengineering,thebackpropagation(bp)neuralnetworkisimprovedtogiveresearchonself-stabilityevaluationofi
4、ts’surroundingrock.firstly,thenetworktopologyisdevised,basedonthepointofsurroundingrock.secondly,themodelisimprovedaccordingtoitsdisadvantages,byintroducingthemomentum,self-adaptiveadjustinglearnrate,variablehiddennodesandsteepfactor,furthermore,geneticalgorithm(ga)isimportedtoseekitsbestin
5、itialweightandthresholdvalue.finally,beusedtoacertaincommandprotectionengineering,themodelisprovedtobecredibleandprecise.commandprotectionengineeringistheimportantcomponentofnationalprotectionengineeringsystem.toraisethelevelofconstructionofcommandprotectionengineering,thebackpropagation(bp
6、)neuralnetworkwasimprovedtogiveresearchonself.stabilityevaluationofitssurroundingrock.firstly,thenetworktopologywasdevised,basedonthecharacteristicsofsurroundingrock.secondly,themodelwasimprovedaccordingtoitsdisadvantages,byintroducingthemomentum,self.adaptiveadjustinglearnrate,variablehidd
7、ennodesandsteepfactor;furthermore,geneticalgorithm(ga)wasimportedtoseekitsbestinitialweightandthresholdvalue.finally,aninstancewasgiventovalidatethealgorithm.theresultsshowthatthemodelisscientificallyreliableandofbettervalueinengineering.keywords:backpr