資源描述:
《基于.遺傳算法求解作業(yè)車間調(diào)度問題》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
1、專業(yè)資料基于遺傳算法求解作業(yè)車間調(diào)度問題摘要作業(yè)車間調(diào)度問題(JSP)簡單來說就是設(shè)備資源優(yōu)化配置問題。作業(yè)車間調(diào)度問題是計算機集成制造系統(tǒng)(CIMS)工程中的一個重要組成部分,它對企業(yè)的生產(chǎn)管理和控制系統(tǒng)有著重要的影響。在當今的競爭環(huán)境下,如何利用計算機技術(shù)實現(xiàn)生產(chǎn)調(diào)度計劃優(yōu)化,快速調(diào)整資源配置,統(tǒng)籌安排生產(chǎn)進度,提高設(shè)備利用率已成為許多加工企業(yè)面臨的重大課題。近年來遺傳算法得到了很大的發(fā)展,應用遺傳算法來解決車間調(diào)度問題早有研究。本文在已有算法基礎(chǔ)上詳細討論了染色體編碼方法并對其進行了改進。在研究了作業(yè)車間調(diào)度問題數(shù)學模型和優(yōu)化算法的基礎(chǔ)上,將一種改進的自適應遺傳算法應用在作業(yè)車間調(diào)
2、度中。該算法是將sigmoid函數(shù)的變形函數(shù)應用到自適應遺傳算法中,并將作業(yè)車間調(diào)度問題中的完工時間大小作為算法的評價指標,實現(xiàn)了交叉率和變異率隨著完工時間的非線性自適應調(diào)整,較好地克服了標準遺傳算法在解決作業(yè)車間調(diào)度問題時的“早熟”和穩(wěn)定性差的缺點,以及傳統(tǒng)的線性自適應遺傳算法收斂速度慢的缺點。以改進的自適應遺傳算法和混合遺傳算法為調(diào)度算法,設(shè)計并實現(xiàn)了作業(yè)車間調(diào)度系統(tǒng),詳細介紹了各個模塊的功能與操作。最后根據(jù)改進的編碼進行遺傳算法的設(shè)計,本文提出了一種求解車間作業(yè)調(diào)度問題的改進的遺傳算法,并給出仿真算例表明了該算法的有效性。關(guān)鍵詞:作業(yè)車間調(diào)度;遺傳算法;改進染色體編碼;生產(chǎn)周期學習
3、資料分享專業(yè)資料SolvingjopshopschedulingproblembasedongeneticalgorithmAbstractSimplyspeaking,thejobshopschedulingproblem(JSP)istheequipmentresourcesoptimizationquestion.JobShopSchedulingProblemasanimportantpartofComputerIntegratedManufacturingSystem(CIMS)engineeringisindispensable,andhasvitaleffectonprod
4、uctionmanagementandcontrolsystem.Inthecompetionecvironmentnowadays,howtousetheassignmentsquicklyandtoplanproductionwithdueconsiderationforallconcernedhasbecomeagreatsubjectformanymanufactory.Inrecentyears,thegeneticalgorithmsobtainedgreatdevelopmentitwasusedtosolvethejobshopschedulingproblemearly
5、.Thispaperdiscussesthechromosomecodemethodindetailbasedonthegeneticalgorithmsandmaketheimprovementonit.ThroughtheresearchonmathematicsmodelofJSPandoptimizedalgorithm,theimprovedadaptivegeneticalgorithm(IAGA)obtainedbyapplyingtheimprovedsigmoidfunctiontoadaptivegeneticalgorithmisproposed.AndinIAGA
6、forJSP,thefitnessofalgorithmisrepresentedbycompletiontimeofjobs.Therefore,thisalgorithmmakingthecrossoverandmutationprobabilityadjustedadaptivelyandnonlinearlywiththecompletiontime,canavoidsuchdisadvantagesasprematureconvergence,lowconvergencespeedandlowstability.Experimentalresultsdemonstratetha
7、ttheproposedgeneticalgorithmdoesnotgetstuckatalocaloptimumeasily,anditisfastinconvergence,simpletobeimplemented.thejobshopschedulingsystembasedonIAGAandGASHisdesignedandrealized,andthefunctionsandoperationsofthesystemm