資源描述:
《無(wú)鉛焊料表面貼裝焊點(diǎn)的可靠性》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)。
1、無(wú)鉛焊料表面貼裝焊點(diǎn)的可靠性
2、第1由于Pb對(duì)人體及環(huán)境的危害,在不久的將來(lái)必將禁止Pb在電子工業(yè)中的使用。為尋求在電子封裝工業(yè)中應(yīng)用廣泛的共晶或近共晶SnPb釬料的替代品,國(guó)際上對(duì)無(wú)Pb釬料進(jìn)行了廣泛研究。其中,共晶SnAg和共晶SnAgCu釬料作為潛在的無(wú)Pb釬料,具有剪切強(qiáng)度、抗蠕變能力、熱疲勞壽命好等特點(diǎn)。在焊接過(guò)程中,熔融的釬料與焊接襯底接觸時(shí),在界面會(huì)形成一層金屬間化合物(IMC)。其形成不但受回流焊接過(guò)程中溫度、時(shí)間的控制,而且在后期的服役過(guò)程中其厚度也會(huì)隨著時(shí)間的延長(zhǎng)而增加。研究表明界面上的金屬
3、間化合物是影響焊點(diǎn)可靠性的一個(gè)關(guān)鍵因素。過(guò)厚的金屬間化合物層會(huì)導(dǎo)致焊點(diǎn)斷裂韌性和抗低周疲勞能力下降,從而導(dǎo)致焊點(diǎn)可靠性的下降。由于無(wú)鉛焊料和傳統(tǒng)的SnPb焊料的成分不同,因此它和焊接基板如Cu、Ni和AgPd等的反應(yīng)速率以及反應(yīng)產(chǎn)物就有可能不同,從而表現(xiàn)出不同的焊點(diǎn)可靠性。本所全面而系統(tǒng)地研究了Sn96.5Ag3.5、Sn95.5Ag3.8Cu0.7和Sn95Sb5等無(wú)鉛焊料和多種基板及器件所形成表面貼裝焊點(diǎn)的可靠性,現(xiàn)就一些研究成果做一簡(jiǎn)要介紹。無(wú)鉛焊料與Au/Ni/Cu焊盤(pán)所形成焊點(diǎn)的可靠性實(shí)驗(yàn)選用的表面
4、貼裝元件為1206型陶瓷電阻。FR4印刷電路板上的焊盤(pán)結(jié)構(gòu)為Cu/Ni-P/Au,其中,Ni-P層厚度為5mm,P含量為12at%。所用焊料為以上幾種無(wú)鉛焊料以及62Sn36Pb2Ag。用剪切強(qiáng)度測(cè)試方法考察焊點(diǎn)在150℃時(shí)效過(guò)程中的可靠性。圖1為SnAg/Ni-P/Cu焊點(diǎn)的掃描電鏡照片。在SnAg/Ni-P界面發(fā)現(xiàn)有Ni3Sn4生成,其厚度隨時(shí)效時(shí)間而增加。SnAg焊點(diǎn)由Sn基體與鑲嵌于其中的Ag3Sn顆粒組成,在界面附近有少量的片狀Ni3Sn4,這是由于在回流過(guò)程中溶于焊料中的Ni在其后的冷卻過(guò)程中析出
5、而形成。與SnPbAg焊點(diǎn)相比,時(shí)效后的SnAg焊點(diǎn)微組織的粗化要輕微得多,Ag3Sn顆粒的大小幾乎不隨時(shí)效時(shí)間變化。圖2為SnPbAg和SnAg焊點(diǎn)的剪切強(qiáng)度與時(shí)效時(shí)間的關(guān)系。可見(jiàn),SnPbAg焊點(diǎn)的強(qiáng)度隨時(shí)效時(shí)間的延長(zhǎng)而下降,經(jīng)1000h時(shí)效后,其強(qiáng)度下降29%。而SnAg焊點(diǎn)在時(shí)效初期,其強(qiáng)度比SnPbAg焊點(diǎn)高,但250h時(shí)效后,焊點(diǎn)強(qiáng)度劇烈下降。時(shí)效結(jié)束時(shí),其強(qiáng)度已不足原有強(qiáng)度的30%。斷口分析表明,SnPbAg和SnAg焊點(diǎn)的斷裂方式明顯不同。對(duì)于SnPbAg焊點(diǎn),時(shí)效前,焊點(diǎn)在焊料內(nèi)部塑性斷裂;
6、隨著時(shí)效的繼續(xù),Ni3Sn4層厚度增加,裂紋在Ni3Sn4層內(nèi)及其與Ni-P界面處產(chǎn)生,并使焊點(diǎn)的剪切強(qiáng)度下降。SnAg焊點(diǎn)在時(shí)效的開(kāi)始階段斷裂方式與SnPbAg焊點(diǎn)相同,但超過(guò)250h時(shí),Ni-P層開(kāi)始從Cu基體上脫落,焊點(diǎn)剪切強(qiáng)度大幅度下降。在回流及時(shí)效過(guò)程中,焊料與Ni-P層間會(huì)發(fā)生互擴(kuò)散,在界面形成金屬間化合物。Ni-P與Cu基體之間的結(jié)合強(qiáng)度主要是通過(guò)Ni-P在化學(xué)鍍過(guò)程中填充Cu表面的微小凹坑互相咬合和通過(guò)原子間作用力而得到的。在400℃以下,Ni-P與Cu之間的互擴(kuò)散不會(huì)影響界面結(jié)合強(qiáng)度。本試驗(yàn)
7、中,Cu/Ni-P層狀結(jié)構(gòu)在回流焊接及時(shí)效處理過(guò)程中所承受的溫度均低于300℃,所以熱處理本身不會(huì)對(duì)Ni-P/Cu的結(jié)合強(qiáng)度產(chǎn)生很大影響。焊料和Ni-P中的互擴(kuò)散組元分別為Sn和Ni。電子探針測(cè)試表明,界面上的Ni3Sn4層中探測(cè)不到P,即P只存在于剩余的Ni-P層中。P被排斥出互擴(kuò)散層是由于其在Ni-Sn金屬間化合物中的溶解度很小所致,而這將導(dǎo)致剩余Ni-P層中P含量上升。圖3為SnPbAg和SnAg焊點(diǎn)中剩余Ni-P層中心部位的P含量的電子探針測(cè)定結(jié)果。從中可見(jiàn),未經(jīng)時(shí)效處理的SnAg焊點(diǎn)中Ni-P層P含
8、量就已較高,在時(shí)效過(guò)程中又以較高的速率上升,直至約250h后達(dá)到飽和。顯然,回流過(guò)程中SnAg與Ni-P反應(yīng)較快是時(shí)效前Ni-P層P較高的原因。而在其后的時(shí)效過(guò)程中,雖然SnPbAg和SnAg與Ni-P的反應(yīng)速率基本一致,但由于此時(shí)SnAg焊點(diǎn)中剩余Ni-P層比SnPbAg焊點(diǎn)中的薄,等厚度Ni-P的消耗仍然會(huì)導(dǎo)致SnAg焊點(diǎn)中Ni-P層P含量以較快的速率上升。Ni-P層P含量的快速積累同時(shí)意味著Ni的快速消耗,即剩余Ni-P中的Ni向SnAg焊料一側(cè)擴(kuò)散,最終會(huì)導(dǎo)致Cu/Ni-P界面上有較多的Kirkend
9、all孔洞的生成,使Cu/Ni-P結(jié)合強(qiáng)度下降。SnPbAg與Ni-P的反應(yīng)較慢,對(duì)Ni-P/Cu的結(jié)合強(qiáng)度的影響則較小。SnAgCu以及SnSb與SnAg焊點(diǎn)的情況相似,時(shí)效過(guò)程中都發(fā)現(xiàn)Ni-P層從Cu上脫落的現(xiàn)象,因此,當(dāng)使用高錫無(wú)鉛焊料時(shí)應(yīng)選用較厚的Ni-P層或其他種類(lèi)的焊盤(pán)結(jié)構(gòu)。無(wú)鉛焊料與Cu焊盤(pán)所形成焊點(diǎn)的可靠性圖4為回流焊接及在150℃時(shí)效前和1000h后SnAg/Cu焊點(diǎn)靠近界面處的掃