人臉識(shí)別-人臉圖像特征提取方法

人臉識(shí)別-人臉圖像特征提取方法

ID:20595614

大?。?.30 MB

頁數(shù):25頁

時(shí)間:2018-10-14

人臉識(shí)別-人臉圖像特征提取方法_第1頁
人臉識(shí)別-人臉圖像特征提取方法_第2頁
人臉識(shí)別-人臉圖像特征提取方法_第3頁
人臉識(shí)別-人臉圖像特征提取方法_第4頁
人臉識(shí)別-人臉圖像特征提取方法_第5頁
資源描述:

《人臉識(shí)別-人臉圖像特征提取方法》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。

1、人臉識(shí)別成云麗目錄人臉的核稀疏表示1.簡(jiǎn)介2.主要特點(diǎn)及技術(shù)流程3.人臉的特征提取方法4.優(yōu)勢(shì)與困難5.主要用途及前景6.主要產(chǎn)品簡(jiǎn)介人臉識(shí)別,是基于人的臉部特征信息進(jìn)行身份識(shí)別的一種生物識(shí)別技術(shù)。用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測(cè)和跟蹤人臉,進(jìn)而對(duì)檢測(cè)到的人臉進(jìn)行臉部的一系列相關(guān)技術(shù),通常也叫做人像識(shí)別、面部識(shí)別。簡(jiǎn)介人臉識(shí)別系統(tǒng)的研究始于20世紀(jì)60年代,80年代后隨著計(jì)算機(jī)技術(shù)和光學(xué)成像技術(shù)的發(fā)展得到提高,而真正進(jìn)入初級(jí)的應(yīng)用階段則在90年后期,并且以美國(guó)、德國(guó)和日本的技術(shù)實(shí)現(xiàn)為主

2、;人臉識(shí)別系統(tǒng)成功的關(guān)鍵在于是否擁有尖端的核心算法,并使識(shí)別結(jié)果具有實(shí)用化的識(shí)別率和識(shí)別速度;“人臉識(shí)別系統(tǒng)”集成了人工智能、機(jī)器識(shí)別、機(jī)器學(xué)習(xí)、模型理論、專家系統(tǒng)、視頻圖像處理等多種專業(yè)技術(shù),同時(shí)需結(jié)合中間值處理的理論與實(shí)現(xiàn),是生物特征識(shí)別的最新應(yīng)用,其核心技術(shù)的實(shí)現(xiàn),展現(xiàn)了弱人工智能向強(qiáng)人工智能的轉(zhuǎn)化。主要特點(diǎn)及技術(shù)流傳統(tǒng)的人臉識(shí)別技術(shù)主要是基于可見光圖像的人臉識(shí)別,這也是人們熟悉的識(shí)別方式,已有30多年的研發(fā)歷史。但這種方式有著難以克服的缺陷,尤其在環(huán)境光照發(fā)生變化時(shí),識(shí)別效果會(huì)急劇下降,無法滿足實(shí)際系統(tǒng)的需

3、要。解決光照問題的方案有三維圖像人臉識(shí)別,和熱成像人臉識(shí)別。但這兩種技術(shù)還遠(yuǎn)不成熟,識(shí)別效果不盡人意。主要特點(diǎn)及技術(shù)流迅速發(fā)展起來的一種解決方案是基于主動(dòng)近紅外圖像的多光源人臉識(shí)別技術(shù)。它可以克服光線變化的影響,已經(jīng)取得了卓越的識(shí)別性能,在精度、穩(wěn)定性和速度方面的整體系統(tǒng)性能超過三維圖像人臉識(shí)別。這項(xiàng)技術(shù)在近兩三年發(fā)展迅速,使人臉識(shí)別技術(shù)逐漸走向?qū)嵱没?。主要特點(diǎn)及技術(shù)流人臉與人體的其它生物特征(指紋、虹膜等)一樣與生俱來,它的唯一性和不易被復(fù)制的良好特性為身份鑒別提供了必要的前提,與其它類型的生物識(shí)別比較人臉識(shí)別具

4、有如下特點(diǎn):1.非強(qiáng)制性2.非接觸性3.并發(fā)性主要特點(diǎn)及技術(shù)流人臉識(shí)別系統(tǒng)主要包括四個(gè)組成部分:1.人臉圖像采集及檢測(cè)2.人臉圖像預(yù)處理3.人臉圖像特征提取4.匹配與識(shí)別人臉圖像采集及檢測(cè)不同的人臉圖像都能通過攝像鏡頭采集下來,比如靜態(tài)圖像、動(dòng)態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時(shí),采集設(shè)備會(huì)自動(dòng)搜索并拍攝用戶的人臉圖像。人臉圖像采集及檢測(cè)主流的人臉檢測(cè)方法基于以上特征采用Adaboost學(xué)習(xí)算法,Adaboost算法是一種用來分類的方法,它把一些比較弱的分類方法合在

5、一起,組合出新的很強(qiáng)的分類方法。人臉檢測(cè)過程中使用Adaboost算法挑選出一些最能代表人臉的矩形特征(弱分類器),按照加權(quán)投票的方式將弱分類器構(gòu)造為一個(gè)強(qiáng)分類器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個(gè)級(jí)聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測(cè)速度。人臉圖像預(yù)處理對(duì)于人臉的圖像預(yù)處理是基于人臉檢測(cè)結(jié)果,對(duì)圖像進(jìn)行處理并最終服務(wù)于特征提取的過程。系統(tǒng)獲取的原始圖像由于受到各種條件的限制和隨機(jī)干擾,往往不能直接使用,必須在圖像處理的早期階段對(duì)它進(jìn)行灰度校正、噪聲過濾等圖像預(yù)處理。對(duì)于人臉圖像而言,其預(yù)處理過程主要包括

6、人臉圖像的光線補(bǔ)償、灰度變換、小波變換、直方圖均衡化、歸一化、幾何校正、濾波以及銳化等。人臉圖像特征提取人臉識(shí)別系統(tǒng)可使用的特征通常分為視覺特征、像素統(tǒng)計(jì)特征、人臉圖像變換系數(shù)特征、人臉圖像代數(shù)特征等。人臉特征提取的方法歸納起來分為兩大類:一種是基于知識(shí)的表征方法;另外一種是基于代數(shù)特征或統(tǒng)計(jì)學(xué)習(xí)的表征方法。基于知識(shí)的表征方法主要是根據(jù)人臉器官的形狀描述以及他們之間的距離特性來獲得有助于人臉分類的特征數(shù)據(jù),其特征分量通常包括特征點(diǎn)間的歐氏距離、曲率和角度等。人臉由眼睛、鼻子、嘴、下巴等局部構(gòu)成,對(duì)這些局部和它們之間

7、結(jié)構(gòu)關(guān)系的幾何描述,可作為識(shí)別人臉的重要特征,這些特征被稱為幾何特征?;谥R(shí)的人臉表征主要包括基于幾何特征的方法和模板匹配法。人臉圖像匹配與識(shí)別提取的人臉圖像的特征數(shù)據(jù)與數(shù)據(jù)庫(kù)中存儲(chǔ)的特征模板進(jìn)行搜索匹配,通過設(shè)定一個(gè)閾值,當(dāng)相似度超過這一閾值,則把匹配得到的結(jié)果輸出。人臉識(shí)別就是將待識(shí)別的人臉特征與已得到的人臉特征模板進(jìn)行比較,根據(jù)相似程度對(duì)人臉的身份信息進(jìn)行判斷。這一過程又分為兩類:一類是確認(rèn),是一對(duì)一進(jìn)行圖像比較的過程。一類是辨認(rèn),是一對(duì)多進(jìn)行圖像匹配對(duì)比的過程。人臉圖像特征提取方法特征提取的效果直接關(guān)系到

8、人臉識(shí)別率,因而特征提取應(yīng)保證提取的人臉特征最具有代表性、包含信息量大、冗余量小,同時(shí),能有一定的魯棒性。線性法:1主成分分析法----獨(dú)立成分分析法2奇異值分解法3線性判別分析法4基于偶對(duì)稱分析的特征提取法非線性法:基于核技術(shù)的特征抽取基本思想就是通過適當(dāng)?shù)姆蔷€性映射將線性不可分的原始樣本變換到某一線性可分的高維特征空間F,這種非線性映射是通過定義適當(dāng)?shù)膬?nèi)

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。