資源描述:
《黃崗數(shù)列通項與求和》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、難點13數(shù)列的通項與求和數(shù)列是函數(shù)概念的繼續(xù)和延伸,數(shù)列的通項公式及前n項和公式都可以看作項數(shù)n的函數(shù),是函數(shù)思想在數(shù)列中的應用.數(shù)列以通項為綱,數(shù)列的問題,最終歸結(jié)為對數(shù)列通項的研究,而數(shù)列的前n項和Sn可視為數(shù)列{Sn}的通項。通項及求和是數(shù)列中最基本也是最重要的問題之一,與數(shù)列極限及數(shù)學歸納法有著密切的聯(lián)系,是高考對數(shù)列問題考查中的熱點,本點的動態(tài)函數(shù)觀點解決有關(guān)問題,為其提供行之有效的方法.●難點磁場(★★★★★)設{an}是正數(shù)組成的數(shù)列,其前n項和為Sn,并且對于所有的自然數(shù)n,an與2的等差中項等于Sn與2的等比中項.(1)寫出數(shù)
2、列{an}的前3項.(2)求數(shù)列{an}的通項公式(寫出推證過程)(3)令bn=(n∈N*),求(b1+b2+b3+…+bn-n).●案例探究[例1]已知數(shù)列{an}是公差為d的等差數(shù)列,數(shù)列{bn}是公比為q的(q∈R且q≠1)的等比數(shù)列,若函數(shù)f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),(1)求數(shù)列{an}和{bn}的通項公式;(2)設數(shù)列{cn}的前n項和為Sn,對一切n∈N*,都有=an+1成立,求.命題意圖:本題主要考查等差、等比數(shù)列的通項公式及前n項和公式、數(shù)列的極限,以
3、及運算能力和綜合分析問題的能力.屬★★★★★級題目.知識依托:本題利用函數(shù)思想把題設條件轉(zhuǎn)化為方程問題非常明顯,而(2)中條件等式的左邊可視為某數(shù)列前n項和,實質(zhì)上是該數(shù)列前n項和與數(shù)列{an}的關(guān)系,借助通項與前n項和的關(guān)系求解cn是該條件轉(zhuǎn)化的突破口.錯解分析:本題兩問環(huán)環(huán)相扣,(1)問是基礎,但解方程求基本量a1、b1、d、q,計算不準易出錯;(2)問中對條件的正確認識和轉(zhuǎn)化是關(guān)鍵.技巧與方法:本題(1)問運用函數(shù)思想轉(zhuǎn)化為方程問題,思路較為自然,(2)問“借雞生蛋”構(gòu)造新數(shù)列{dn},運用和與通項的關(guān)系求出dn,絲絲入扣.解:(1)∵a
4、1=f(d-1)=(d-2)2,a3=f(d+1)=d2,∴a3-a1=d2-(d-2)2=2d,∵d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,∴=q2,由q∈R,且q≠1,得q=-2,∴bn=b·qn-1=4·(-2)n-1(2)令=dn,則d1+d2+…+dn=an+1,(n∈N*),∴dn=an+1-an=2,∴=2,即cn=2·bn=8·(-2)n-1;∴Sn=[1-(-2)n].∴[例2]設An為數(shù)列{an}的前n項和,An=(an-1),數(shù)列{bn}的通項公式為bn
5、=4n+3;(1)求數(shù)列{an}的通項公式;(2)把數(shù)列{an}與{bn}的公共項按從小到大的順序排成一個新的數(shù)列,證明:數(shù)列{dn}的通項公式為dn=32n+1;(3)設數(shù)列{dn}的第n項是數(shù)列{bn}中的第r項,Br為數(shù)列{bn}的前r項的和;Dn為數(shù)列{dn}的前n項和,Tn=Br-Dn,求.命題意圖:本題考查數(shù)列的通項公式及前n項和公式及其相互關(guān)系;集合的相關(guān)概念,數(shù)列極限,以及邏輯推理能力.知識依托:利用項與和的關(guān)系求an是本題的先決;(2)問中探尋{an}與{bn}的相通之處,須借助于二項式定理;而(3)問中利用求和公式求和則是最
6、基本的知識點.錯解分析:待證通項dn=32n+1與an的共同點易被忽視而寸步難行;注意不到r與n的關(guān)系,使Tn中既含有n,又含有r,會使所求的極限模糊不清.技巧與方法:(1)問中項與和的關(guān)系為常規(guī)方法,(2)問中把3拆解為4-1,再利用二項式定理,尋找數(shù)列通項在形式上相通之處堪稱妙筆;(3)問中挖掘出n與r的關(guān)系,正確表示Br,問題便可迎刃而解.解:(1)由An=(an-1),可知An+1=(an+1-1),∴an+1-an=(an+1-an),即=3,而a1=A1=(a1-1),得a1=3,所以數(shù)列是以3為首項,公比為3的等比數(shù)列,數(shù)列{an
7、}的通項公式an=3n.(2)∵32n+1=3·32n=3·(4-1)2n=3·[42n+C·42n-1(-1)+…+C·4·(-1)+(-1)2n]=4n+3,∴32n+1∈{bn}.而數(shù)32n=(4-1)2n=42n+C·42n-1·(-1)+…+C·4·(-1)+(-1)2n=(4k+1),∴32n{bn},而數(shù)列{an}={a2n+1}∪{a2n},∴dn=32n+1.(3)由32n+1=4·r+3,可知r=,∴Br=,●錦囊妙計1.數(shù)列中數(shù)的有序性是數(shù)列定義的靈魂,要注意辨析數(shù)列中的項與數(shù)集中元素的異同.因此在研究數(shù)列問題時既要注意函
8、數(shù)方法的普遍性,又要注意數(shù)列方法的特殊性.2.數(shù)列{an}前n項和Sn與通項an的關(guān)系式:an=3.求通項常用方法①作新數(shù)列法.作等差數(shù)列與等比數(shù)列.