資源描述:
《不確定性優(yōu)化方法研究及其在車身結構耐撞性優(yōu)化中應用》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫。
1、AbstractTheuncertainty.basedoptimizationmethodiscrucialinpromotingthequalityoftheproducts.Asplentyofdeepresearchesontheuncertainty-basedoptimizationmethodrecently,thesurrogate—baseduncertaintyoptimizationmethodisgraduallVbecomlngpopularandisfaVoredbymorean
2、dmoredesignersduetoitssimplityandhighefficiency.NeVertheless,relativeresearchesoninvestigatingthismethodarequiteinsumcient;therefore,toconductsuchresearchesismeaningfula11dvaluable.ThecrashworthinessoptimizationdesignofCafbodyisoneofthekeyderectionsofVehlc
3、lecrashlngsatetyresearchareas,whichisacombinationoftheoDtimizationmethodandthecrashworthinessdesignengineeringproblem.However,theeverpublishedresearchesmainlyfocusonimprovingthecrashworthinessbehavioursthroughadeterminedoptimizationprocess;thus,theintroduc
4、tionofuncertaintvoptlmizationmethodinthisareaisofcrucialmeaningf.u1.Basedontheabovementlonedstatements,themainresearchis“stedasthefollowthreesections.Sec.1.Basedonthe109icanalysis,thedefectsoftheconventionalsurrogatebaseduncertaIntyoptlmlzationmethodarefig
5、uredoutandtheextremalmappingmethod1sorl91natedtoso】Vethjsproblem.Onbasisofthis,theDOEreconstructionbasedsurrogatereconstructionmethodisoriginated,whichisappliedtoconstructa11theneededf-unctionsintheneⅥ,lyorigjnateduncertaintyoptimizationprocess.F。urthermor
6、e,thestatisticaltheoryisemployedheretoinvestigatetheprecisionteatureofthereconstructedDOE.Additionally,thebenchmarksareemployedtoValidatetheresonablenessofthenewmethodandtostudyandcomparetheprecisioncharacteristicsof4kindsorrogatesintheuncertaintyoptimizat
7、ionprocess,whichisalmedtoproVidedesinerswitharef.erenceinselectionsurrogatetVpe.Sec.2.ToValidatethepracticalabiltyofthenewlyoriginatedmethod,afbam-filledtaperedthinwalledstructuresisemployedherein,andboththedetermisticoptlmlzatIonmethodanduncertaintyoptimi
8、zationmethodisappliedtomaximizeitscrashworthlness1ndicators.TheresultindicatesthattheuncertaintVbasedoptlmlzatlonhasworsecrashworthinessbehavioursbutmorereliableconstraintsandmorerobustobjectiVe.Besides,thene