資源描述:
《地鐵隧道水平局部?jī)鼋Y(jié)施工應(yīng)力與位移場(chǎng)數(shù)值模擬分析》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、地鐵隧道水平局部?jī)鼋Y(jié)施工應(yīng)力與位移場(chǎng)數(shù)值模擬分析摘要:北京地鐵大北窯區(qū)間在我國(guó)首次采用水平凍結(jié)施工,準(zhǔn)確預(yù)測(cè)水平凍結(jié)施工引起的地表變形十分重要。文章介紹利用FLAC軟件對(duì)該工程進(jìn)行的施工隧道應(yīng)力及位移場(chǎng)數(shù)值模擬研究。關(guān)鍵詞:地鐵隧道 水平凍結(jié) 凍結(jié)壁 地表變形 數(shù)值模擬 凍結(jié)法由于具有高強(qiáng)、阻水、均勻、靈活、經(jīng)濟(jì)等特點(diǎn),在日本及歐洲各國(guó)的城市地鐵等市政工程中都有廣泛應(yīng)用。我國(guó)在北京、上海地鐵施工中也采用過局部?jī)鼋Y(jié)技術(shù),但地鐵隧道的水平凍結(jié)施工在我國(guó)還沒有先例。北京地鐵大北窯車站區(qū)間隧道施工首次成功地采用了水平凍結(jié)技術(shù),水平凍結(jié)長(zhǎng)度40余米。工程地處交通樞紐,交通繁忙、建筑眾多,隧道上覆多條
2、地下市政管線。凍結(jié)施工伴有凍脹和融降現(xiàn)象,過量的凍脹量和融降量將使地下管線及地上的建筑物、道路等受到影響甚至破壞,因此,研究和預(yù)測(cè)城市地鐵隧道水平凍結(jié)對(duì)地下管線、地表變形的影響規(guī)律十分必要。1 工程簡(jiǎn)介北京地鐵大北窯區(qū)間隧道局部水平凍結(jié)施工工程距大北窯車站東側(cè)40m,位于建外大街與東三環(huán)的交叉處,有多條地下管線,隧道頂部有2m厚的粉細(xì)砂層,由于多條管線滲漏,致使粉細(xì)砂土飽和。隧道暗挖施工時(shí)出現(xiàn)流砂坍塌,為保障地面立交橋的安全暢通,隔斷門向西40m隧道采用局部水平凍結(jié)法施工。地質(zhì)情況為:0~-115m為雜填土層,-115~-1015m為輕亞粘土層,-1015~-1215m為粉細(xì)砂層,-1215
3、~-1815m為圓礫石層,隧道底部-1815~-2215m為輕亞粘土層。2 FLAC軟件及模型的建立FLAC軟件即連續(xù)介質(zhì)快速拉格朗日分析軟件,是目前世界上最優(yōu)秀的巖土力學(xué)數(shù)值計(jì)算軟件之一,在模擬支護(hù)體方面可提供梁、樁、錨桿、殼體等多種結(jié)構(gòu)單元,非常適合于研究隧道開挖等巖土工程問題。211 施工隧道的數(shù)值分析模型選取凍結(jié)法施工隧道的橫斷面作為開挖模擬的力學(xué)幾何模型,以現(xiàn)場(chǎng)原型工程為研究對(duì)象??紤]問題的對(duì)稱性,取一半建立模型,待開挖的隧道斷面取半徑為3m的圓形,上覆蓋土層厚12m,隧道底板土層厚度分別取10m和23m,滿足大于隧道開挖影響范圍3~5倍的要求。力學(xué)模型尺寸為23m×28m,按平面
4、應(yīng)變問題求解,模型底部邊界采用固定X、Y方向位移約束,左、右邊界都采用固定X方向的位移約束條件。由于原型工程屬于淺埋隧道,座落在其上方的東三環(huán)立交橋的樁基持力層在隧道底板埋深水平以下,故地表上方不需加載。212 隧道分步開挖模型選取工程現(xiàn)場(chǎng)隧道縱斷面作為隧道開挖模擬的力學(xué)幾何模型,隧道縱向長(zhǎng)40m,斷面高112m,開挖步距2m,上覆土層厚12m,隧道底部范圍土層深10m,平面40m×28m,網(wǎng)格劃分為1120單元,按平面應(yīng)變問題求解,模型底部邊界采用固定X、Y方向位移約束,左右邊界采用固定X方向約束。213 模型的有關(guān)參數(shù)本模型采用摩爾—庫(kù)侖準(zhǔn)則參考有關(guān)資料確定模型材料參數(shù)如表1。表1 模型
5、材料參數(shù)3 隧道開挖過程數(shù)值計(jì)算結(jié)果處理在修正模型中輸入土體初始參數(shù)后,計(jì)算分析主應(yīng)力、塑性區(qū)發(fā)展?fàn)顩r及拱頂和隧道上方地表的垂直位移過程,得到如下結(jié)論:(1)作為施工隧道開挖中承受上覆地壓的主要載體凍結(jié)壁的拱腳上出現(xiàn)應(yīng)力集中,應(yīng)力集中系數(shù)可達(dá)3~4之多。(2)凍結(jié)壁拱腳凍土體可能會(huì)出現(xiàn)塑性屈服區(qū),這正是現(xiàn)場(chǎng)隧道收斂測(cè)試中出現(xiàn)的兩拱腳之間距離先減小后增大現(xiàn)象的根本原因。(3)在隧道開挖造成土層損失引起地表下沉的過程中,由于抗壓、抗彎強(qiáng)度等力學(xué)指標(biāo)比周圍土體大得多的凍結(jié)壁減緩了隧道中線及附近的地表下沉,從而減少了地表下沉量。根據(jù)PECK原理作出如下地層地表沉降預(yù)測(cè):2-xS=Smax·exp2i
6、2式中 Smax地表最大沉降量;i沉降槽寬度系數(shù);x距隧道中心線距離。取i=0141H(H為開挖深度),繪出按PECK公式計(jì)算的地面沉降曲線(見圖1)。圖1 地表沉降曲線圖比較表明,由模擬得到的地面沉降曲線與PECK公式的曲線相一致。從圖1可知,隧道開挖后形成的地表沉降槽在垂直隧道軸線方向上的影響范圍為隧道外側(cè)約215倍洞徑。將沉降槽近似看成三角形,沉降槽的平均傾斜率ΔT=SmaxΠ的多高層建筑,基礎(chǔ)的允許傾斜率≤01003,所以隧道水平凍結(jié)施工引起的正常地面沉降不會(huì)使地面建筑和混凝土路面遭到破壞。改變凍結(jié)壁厚度(018m、112m、115m、118m)得到地表沉降與凍結(jié)壁關(guān)系曲線見圖2。圖
7、2 地表沉降與凍結(jié)壁厚度的關(guān)系 從以上圖形可得出如下結(jié)論:(1)凍結(jié)壁的厚度參數(shù)是隧道水平凍結(jié)施工中的一個(gè)重要參數(shù),凍結(jié)壁對(duì)控制地表沉降的作用很明顯。地表沉降在凍結(jié)壁厚度S=112m時(shí)為12mm,S=018m時(shí)為16mm(增加60%),S=115m時(shí)為10mm(減少了20%)。(2)對(duì)于原型工程,其他條件(開挖步距、臺(tái)階工作面長(zhǎng)度及掘砌工藝等)不變時(shí),凍結(jié)壁厚度可降為018m,此時(shí)地表沉降量為16mm,滿