資源描述:
《高考數(shù)學(xué)概率大題專項(xiàng)題型》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、高考概率大題專項(xiàng)題型 一.解答題1.某年級(jí)星期一至星期五每天下午排3節(jié)課,每天下午隨機(jī)選擇1節(jié)作為綜合實(shí)踐課(上午不排該課程),張老師與王老師分別任教甲、乙兩個(gè)班的綜合實(shí)踐課程.(1)求這兩個(gè)班“在星期一不同時(shí)上綜合實(shí)踐課”的概率;(2)設(shè)這兩個(gè)班“在一周中同時(shí)上綜合實(shí)踐課的節(jié)數(shù)”為X,求X的概率分布表與數(shù)學(xué)期望E(X).2.甲、乙兩人組成“星隊(duì)”參加猜成語活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語,在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得3分;如果只有一個(gè)人猜對(duì),則“星隊(duì)”得1分;如果兩人都沒猜對(duì),則“星隊(duì)”得0分.已知甲每輪猜對(duì)的概率是,乙每輪猜對(duì)的概率是;
2、每輪活動(dòng)中甲、乙猜對(duì)與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:(I)“星隊(duì)”至少猜對(duì)3個(gè)成語的概率;(II)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.第27頁(共27頁)3.某小組共10人,利用假期參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3,4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).(1)設(shè)A為事件“選出的2人參加義工活動(dòng)次數(shù)之和為4”,求事件A發(fā)生的概率;(2)設(shè)X為選出的2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.4.某商場(chǎng)一號(hào)電梯從1層出發(fā)后可以在2、3、4層??浚?/p>
3、知該電梯在1層載有4位乘客,假設(shè)每位乘客在2、3、4層下電梯是等可能的.(Ⅰ)求這4位乘客中至少有一名乘客在第2層下電梯的概率;(Ⅱ)用X表示4名乘客在第4層下電梯的人數(shù),求X的分布列和數(shù)學(xué)期望.第27頁(共27頁)5.集成電路E由3個(gè)不同的電子元件組成,現(xiàn)由于元件老化,三個(gè)電子元件能正常工作的概率分別降為,,,且每個(gè)電子元件能否正常工作相互獨(dú)立,若三個(gè)電子元件中至少有2個(gè)正常工作,則E能正常工作,否則就需要維修,且維修集成電路E所需費(fèi)用為100元.(Ⅰ)求集成電路E需要維修的概率;(Ⅱ)若某電子設(shè)備共由2個(gè)集成電路E組成,設(shè)X為該電子設(shè)備需要維修集成電路
4、所需的費(fèi)用,求X的分布列和期望.6.某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種,方案一:每滿200元減50元:方案二:每滿200元可抽獎(jiǎng)一次.具體規(guī)則是依次從裝有3個(gè)紅球、1個(gè)白球的甲箱,裝有2個(gè)紅球、2個(gè)白球的乙箱,以及裝有1個(gè)紅球、3個(gè)白球的丙箱中各隨機(jī)摸出1個(gè)球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個(gè)數(shù)3210實(shí)際付款半價(jià)7折8折原價(jià)(Ⅰ)若兩個(gè)顧客都選擇方案二,各抽獎(jiǎng)一次,求至少一個(gè)人獲得半價(jià)優(yōu)惠的概率;(Ⅱ)若某顧客購物金額為320元,用所學(xué)概率知識(shí)比較哪一種方案更劃算?第27頁(共27頁)7.為豐富中
5、學(xué)生的課余生活,增進(jìn)中學(xué)生之間的交往與學(xué)習(xí),某市甲乙兩所中學(xué)舉辦一次中學(xué)生圍棋擂臺(tái)賽.比賽規(guī)則如下,雙方各出3名隊(duì)員并預(yù)先排定好出場(chǎng)順序,雙方的第一號(hào)選手首先對(duì)壘,雙方的勝者留下進(jìn)行下一局比賽,負(fù)者被淘汰出局,由第二號(hào)選手挑戰(zhàn)上一局獲勝的選手,依此類推,直到一方的隊(duì)員全部被淘汰,另一方算獲勝.假若雙方隊(duì)員的實(shí)力旗鼓相當(dāng)(即取勝對(duì)手的概率彼此相等)(Ⅰ)在已知乙隊(duì)先勝一局的情況下,求甲隊(duì)獲勝的概率.(Ⅱ)記雙方結(jié)束比賽的局?jǐn)?shù)為ξ,求ξ的分布列并求其數(shù)學(xué)期望Eξ.8.M公司從某大學(xué)招收畢業(yè)生,經(jīng)過綜合測(cè)試,錄用了14名男生和6名女生,這20名畢業(yè)生的測(cè)試成績?nèi)?/p>
6、莖葉圖所示(單位:分),公司規(guī)定:成績?cè)?80分以上者到“甲部門”工作;180分以下者到“乙部門”工作.另外只有成績高于180分的男生才能擔(dān)任“助理工作”.(Ⅰ)如果用分層抽樣的方法從“甲部分”人選和“乙部分”人選中選取8人,再從這8人中選3人,那么至少有一人是“甲部門”人選的概率是多少?(Ⅱ)若從所有“甲部門”人選中隨機(jī)選3人,用X表示所選人員中能擔(dān)任“助理工作”的人數(shù),寫出X的分布列,并求出X的數(shù)學(xué)期望.第27頁(共27頁)9.生產(chǎn)A,B兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種元件各100件進(jìn)行檢測(cè),
7、檢測(cè)結(jié)果統(tǒng)計(jì)如下:測(cè)試指標(biāo)[70,76)[76,82)[82,88)[88,94)[94,100]元件A81240328元件B71840296(Ⅰ)試分別估計(jì)元件A,元件B為正品的概率;(Ⅱ)生產(chǎn)一件元件A,若是正品可盈利40元,若是次品則虧損5元;生產(chǎn)一件元件B,若是正品可盈利50元,若是次品則虧損10元.在(Ⅰ)的前提下,(?。┯沊為生產(chǎn)1件元件A和1件元件B所得的總利潤,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;(ⅱ)求生產(chǎn)5件元件B所獲得的利潤不少于140元的概率.10.一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取50個(gè)作為樣本,稱出它們
8、的重量(單位:克),重量分組區(qū)間為[5,15],(15,25],(