資源描述:
《考研必備資料】數(shù)學(xué)一_考研大綱》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫。
1、【2012考研必備資料】數(shù)學(xué)一_考研大綱 考試科目:高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計 考試形式和試卷結(jié)構(gòu) 一、試卷滿分及考試時間 試卷滿分為150分,考試時間為180分鐘. 二、答題方式 答題方式為閉卷、筆試. 三、試卷內(nèi)容結(jié)構(gòu) 高等教學(xué) 56% 線性代數(shù) 22% 概率論與數(shù)理統(tǒng)計22% 四、試卷題型結(jié)構(gòu) 試卷題型結(jié)構(gòu)為: 單選題8小題,每題4分,共32分 填空題6小題,每題4分,共24分解答題(包括證明題)9小題,共94分高等數(shù)學(xué) 一、函數(shù)、極限、連續(xù) 考試內(nèi)容 函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)
2、、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限與右極限 無窮小量和無窮大量的概念及其關(guān)系 無窮小量的性質(zhì)及無窮小量的比較 極限的四則運算 極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個重要極限: 函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì) 考試要求 1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系. 2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性. 3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念. 4.掌握基本初等函數(shù)的性質(zhì)及其圖形
3、,了解初等函數(shù)的概念. 5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左、右極限之間的關(guān)系. 6.掌握極限的性質(zhì)及四則運算法則. 7.掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法. 8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限. 9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型. 10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì). 二、一元函數(shù)微分學(xué) 考試內(nèi)容 導(dǎo)數(shù)和微分的
4、概念 導(dǎo)數(shù)的幾何意義和物理意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線和法線 導(dǎo)數(shù)和微分的四則運算基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法 高階導(dǎo)數(shù)一階微分形式的不變性 微分中值定理 洛必達(L’Hospital)法則 函數(shù)單調(diào)性的判別函數(shù)的極值 函數(shù)圖形的凹凸性、拐點及漸近線 函數(shù)圖形的描繪 函數(shù)的最大值和最小值 弧微分 曲率的概念 曲率圓與曲率半徑 考試要求 1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)
5、性之間的關(guān)系. 2.掌握導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分. 3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù). 4.會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù). 5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理. 6.掌握用洛必達法則求未定式極限的方法. 7.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及
6、其應(yīng)用. 8.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù)。當(dāng)時,的圖形是凹的;當(dāng)時,的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形. 9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑. 三、一元函數(shù)積分學(xué) 考試內(nèi)容 原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓一萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分 反常(廣義)積分 定積分的應(yīng)用
7、 考試要求 1.理解原函數(shù)的概念,理解不定積分和定積分的概念. 2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法. 3.會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分. 4.理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式. 5.了解反常積分的概念,會計算反常積分. 6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的