markov random fields and applications

markov random fields and applications

ID:30015777

大小:1.36 MB

頁數(shù):21頁

時間:2018-12-26

markov random fields and applications_第1頁
markov random fields and applications_第2頁
markov random fields and applications_第3頁
markov random fields and applications_第4頁
markov random fields and applications_第5頁
資源描述:

《markov random fields and applications》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、MarkovRandomFieldsandApplicationsClicktoeditMastersubtitlestyleSoumyaGhosh09年3月25日Outline?MRFbasics–BayesianImageAnalysis–MarkovRandomFieldstheory–Gibbs–MarkovEquivalence–Inference–Learning?Application–ImageSegmentation09年3月25日BayesianImageAnalysisNoiseTransmissionOriginalImageDegraded(observ

2、ed)Image09年3月25日BayesianImageAnalysis?LetXbetheobservedimage={x1,x2…xmn}?LetYbethetrueimage={y1,y2…ymn}?Goal:findY=y*={y1*,y2*…}suchthatP(Y=y*

3、X)ismaximum.?LabelingproblemwithasearchspaceofLmn–Listhesetoflabels.–m*nobservations.3/25/09FirstGuess?Assumethelabelsyiareindependent.P(Y

4、X)=∏mni=1P(

5、yi

6、xi)MaximizingP(Y

7、X)boilsdowntosimplymaximizingtheindividualP(yi)s.3/25/09UnfortunatelyObservedSVMMRFImage3/25/09MarkovRandomFields?Introducedinthe1960s,aprincipledapproachforincorporatingcontextinformation.?Incorporatingdomainknowledge.?WorkswithintheBayesianframework.?Widelyworkedoninthe7

8、0sdisappearedoverthe80sandfinallymadeabigcomebackinthelate90s.3/25/09MarkovRandomField?RandomField:LetbeafamilyF={F,F,...,F}12MofrandomvariablesdefinedonthesetS,inwhicheachrandomvariabletakesavalueinalabelsetL.ThefamilyFiscalledarandomfield.Ffii?MarkovRandomField:FissaidtobeaMarkovrandomfield

9、?onSwithrespecttoaneighborhoodsystemNifandonlyifthefollowingtwoconditionsaresatisfied:Possitivity:P(f)>0,"f?FMarkovianity:P(f

10、S-{i})=P(f

11、f)iiNi3/25/09ImageAnalysis?Wecouldthusrepresentboththeobservedimage(X)andthetrueimage(Y)asMarkovrandomfields.X–observedimageY–trueimage?AndinvoketheBayesian

12、frameworktofindP(Y

13、X)3/25/09Details?P(Y

14、X)proportionaltoP(X

15、Y)P(Y)–P(X

16、Y)isthedatamodel.–P(Y)modelsthelabelinteraction.?NextweneedtocomputethepriorP(Y=y)andthelikelihoodP(X

17、Y).3/25/09Cliques?AcliqueisdefinedasasubsetofsitesinF,whereeverypairofsitesareneighborsofeachother.Thecollectionsofsingl

18、e-site,double-site,andtriple-sitecliquesaredenotedbyC1,C2,C3and…Cn3/25/09Markov–GibbsEquivalence?GibbsDistribution:P(f)=(1/Z)e(-1/T)U(f)whereU(f)=∑cinCVc(f)=∑iinC1V1(fi)+∑iinC2V2(fi,fj)+…Z–NormalizingFactoroverthespaceofallconfigurations.?Ham

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。