kitada,quantum mechanics

kitada,quantum mechanics

ID:31471999

大?。?.00 MB

頁(yè)數(shù):182頁(yè)

時(shí)間:2019-01-10

kitada,quantum mechanics_第1頁(yè)
kitada,quantum mechanics_第2頁(yè)
kitada,quantum mechanics_第3頁(yè)
kitada,quantum mechanics_第4頁(yè)
kitada,quantum mechanics_第5頁(yè)
資源描述:

《kitada,quantum mechanics》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、arXiv:quant-ph/0410061v414Feb200912QUANTUMMECHANICS?HitoshiKitada?December28,2003?c1998–2003byHitoshiKitada,AllRightsReserved?GraduateSchoolofMathematicalSciences,UniversityofTokyo,Komaba,Meguro,Tokyo153-8914,Japan,e-mail:kitada@kims.ms.u-tokyo.ac.jp,webpag

2、e:http://kims.ms.u-tokyo.ac.jp/iiPrefaceIconsiderinthisbookaformulationofQuantumMechanics,whichisoftenabbreviatedasQM.UsuallyQMisformulatedbasedonthenotionoftimeandspace,bothofwhicharethoughtapriorigivenquantitiesornotions.However,whenwetrytode?nethenotiono

3、fvelocityormomentum,weencounteradi?cultyaswewillseeinchapter1.Theproblemisthatifthenotionoftimeisgivenapriori,thevelocityisde?nitelydeterminedwhengivenaposition,whichcontradictstheuncertaintyprincipleofHeisenberg.WethensetthebasisofQMonthenotionofpositionan

4、dmomentumoperatorsasinchapter2.Timeofalocalsystemthenisde?nedapproximatelyasaratio

5、x

6、/

7、v

8、betweenthespacecoordinatexandthevelocityv,where

9、x

10、,etc.denotestheabsolutevalueorlengthofavectorx.InthisformulationofQM,wecankeeptheuncertaintyprinciple,andtimeisaquanti

11、tythatdoesnothaveprecisevaluesunliketheusuallysupposednotionoftimehas.Thefeatureoflocaltimeisthatitisatimepropertoeachlocalsystem,whichisde?nedasa?nitesetofquantummechanicalparticles.Wenowhaveanin?nitenumberoflocaltimesthatareuniqueandpropertoeachlocalsyste

12、m.Basedonthenotionoflocaltime,themotioninsidealocalsystemisdescribedbytheusualSchr¨odingerequation.WeinvestigatesuchmotioninagivenlocalsysteminpartII.Thisisausualquantummechanics.Aftersomeexcursionoftheinvestigationoflocalmotion,weconsiderinpartIIItherelati

13、verelationormotionbetweenplurallocalsystems.Weregardeachlocalsystem’scenterofmassasaclassicalparticle.Thenastherelativecoordinateinsidealocalsystemisindependentofitscenterofmass,wecansetanarbitraryruleontherelationamongthosecentersofmassoflocalsystems.Weado

14、pttheprinciplesofgeneralrelativityastherulesthatgoverntherelationsofplurallocalsystems.Bythereasonthatthecenterofmassandtheinnercoordinateareindependent,wecancombinequantummechanicsandgeneralrelativity

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。