資源描述:
《基于引力搜索算法的水火電短期優(yōu)化調(diào)度方法》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、華中科技大學(xué)碩士學(xué)位論文NSGSA-CM算法有更好的全局優(yōu)化性能,在滿足所有約束的情況下獲得了較小的燃煤成本與污染氣體排放??芍闹械乃惴ㄅc約束處理策略解決水火電系統(tǒng)短期調(diào)度問題是可行和有效的。關(guān)鍵詞:水火電系統(tǒng);節(jié)能環(huán)保;多目標(biāo)優(yōu)化;引力搜索算法;約束處理策略III萬方數(shù)據(jù)華中科技大學(xué)碩士學(xué)位論文AbstractTheshort-termhydrothermaloptimalschedulinghashugeeconomicbenefitsinelectricpowersystemoperation,soitisalwaysahotissuefo
2、rresearchers.Inthepowersystemschedulingproblem,thetraditionalmathematicalmodelonlyconsidersmaximizingtheeconomicincome,theobjectiveoftheproblemismakingfulluseofthehydraulicresourceandminimizingthefuelcostofthermalplants.Withtherapiddevelopmentofmodernsociety,theenergyshortagean
3、denvironmentproblembecomeserious,energyefficiencyandenvironmentalprotectionarethenevitablechoiceforthestrategyofsustainabledevelopment.Itissignificanttotaketheemissionasoneoftheobjectivesofhydrothermalschedulingproblem.Researchershaveproposedmanyoptimizationstochasticsearchalgo
4、rithmsforsolvinghydrothermalschedulingproblem,butmostofthesealgorithmssufferfromprematureconvergence,andthestrategyofconstraintshandlingisrarelydeveloped.Thispaperimprovesthesearchperformanceofthegravitationalsearchalgorithm,andproposesthemulti-objectivegravitationalsearchalgor
5、ithmtosolveshort-termeconomic/environmentalhydrothermalscheduling.Themainworksofthispaperaredescribedasfollows:1)Inordertoovercomethedrawbackoftheprematureconvergence,thepaperproposesanimprovedgravitationalsearchalgorithm(IGSA).Firstly,thepaperintroducesparticlememorycharactera
6、ndpopulationsocialinformationinvelocityupdateprocess.Andachaoticmutationisadoptedtoenlargethesearchdirectionfromtheregionnearthelocaloptimaltotheglobalfeasibleregion,whichimprovestheperformancetofindtheglobaloptimalsolution.Furthermore,IGSAutilizesarulebasedonselectionoperatorf
7、orpopulationevolution;itensuresthepopulationalwaysevolvestowardstheglobaloptimalsolution.Todealwiththemulti-objectiveoptimizationproblem,byintroducingtheconceptofnon-dominatedsortingandcrowdingdistance,thispaperdevelopsanon-dominatedsortinggravitationalsearchalgorithmwithchaoti
8、cmutation.ThetestsofbenchmarkproblemsprovethatNSGSA-CM