資源描述:
《researchondataminingtechnologybasedonwekaplatform基于》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)。
1、ScienceDiscovery2017;5(4):287-292http://www.sciencepublishinggroup.com/j/sddoi:10.11648/j.sd.20170504.18ISSN:2331-0642(Print);ISSN:2331-0650(Online)ResearchonDataMiningTechnologyBasedonWekaPlatformWangPanZaoDepartmentofInformationandEngineering,Sichu
2、anTourismUniversity,Chengdu,ChinaEmailaddress:644464113@qq.comTocitethisarticle:WangPanZao.ResearchonDataMiningTechnologyBasedonWekaPlatform.ScienceDiscovery.Vol.5,No.4,2017,pp.287-292.doi:10.11648/j.sd.20170504.18Received:March21,2017;Accepted:May18
3、,2017;Published:June8,2017Abstract:ResearchusesWekabigdataminingtechnologyplatformtoanalyzethedata.TheassociationrulesminingmethodsofdiscretesampledatabyWekatechnology,usingSimpleKMeansclusteringalgorithmforclusteringanalysisofthesimulatedsampledatam
4、ining,commonfeaturesofeachtypeofdataandthedifferencedatabetweendifferentclustersfromwhere,foravarietyofdataregiondivision,analysisofdifferentregionsofthedatadistribution.Forexample,miningresearchproject,aschoolinthecollegeentranceexaminationscoresdat
5、aforthesimulationsample,inChinese,mathandEnglishcollegeentranceexaminationscoresastheobjectofanalysisoflargedatamining,thepaperinscienceclasses,thelanguage,thetotalscoreswerecomparedwiththedistribution.Theintegrateduseofstatisticalanalysisanddatamini
6、ngtechnology,mininganalysisoncollegeentranceexaminationdatadeeply,getusefulinformationwithperformanceclustering,hasstrongtheoreticalvalue,canhelptothecollegeentranceexaminationreform,givesomeguidancetohighschooleducation.Keywords:DataMining,ClusterAn
7、alysis,WekaPlatform,CollegeEntranceExamination基于Weka平臺(tái)的大數(shù)據(jù)挖據(jù)技術(shù)研究王攀藻信息與工程學(xué)院,四川旅游學(xué)院,成都,中國(guó)郵箱644464113@qq.com摘要:研究使用Weka大數(shù)據(jù)挖掘技術(shù)平臺(tái)對(duì)數(shù)據(jù)進(jìn)行挖掘分析。采用Weka的離散化技術(shù)對(duì)樣本數(shù)據(jù)進(jìn)行關(guān)聯(lián)規(guī)則挖掘的方法,使用SimpleKMeans聚類(lèi)算法對(duì)模擬樣本數(shù)據(jù)進(jìn)行聚類(lèi)分析,從中挖掘每一類(lèi)數(shù)據(jù)的共同特征以及不同簇間數(shù)據(jù)的區(qū)別所在,對(duì)各種數(shù)據(jù)區(qū)間劃分,分析不同區(qū)域的數(shù)據(jù)分布。舉例挖掘
8、研究項(xiàng)目,以某校高考成績(jī)數(shù)據(jù)為模擬樣本,以語(yǔ)文、數(shù)學(xué)和英語(yǔ)高考成績(jī)?yōu)榉治鰧?duì)象,進(jìn)行大數(shù)據(jù)挖掘研究,得出在文理科分班下,語(yǔ)、數(shù)、外總分成績(jī)分別對(duì)比分布結(jié)果。綜合運(yùn)用統(tǒng)計(jì)分析和數(shù)據(jù)挖掘技術(shù),深入地對(duì)高考成績(jī)數(shù)據(jù)進(jìn)行挖掘分析,獲得以成績(jī)聚類(lèi)為主的潛在有用信息,具有較強(qiáng)的理論價(jià)值,能對(duì)高考模式改革起到幫助作用,對(duì)高考教育起到一定的指導(dǎo)作用。關(guān)鍵詞:數(shù)據(jù)挖掘,聚類(lèi)分析,Weka平臺(tái),高考成績(jī)ScienceDiscovery2017;5(4):287-2922881.引言首先將樣本中的n個(gè)數(shù)據(jù)對(duì)象按照一定的