資源描述:
《基于光流的圖像目標(biāo)跟蹤方法研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、摘要?jiǎng)討B(tài)序列圖像跟蹤是計(jì)算機(jī)視覺(jué)研究領(lǐng)域中十分重要的問(wèn)題。光流法在序列圖像的運(yùn)動(dòng)轂標(biāo)捻測(cè)與跟蹤中褥舞了較好躲應(yīng)用,光渡法用于運(yùn)動(dòng)爨標(biāo)趿蹤存在的問(wèn)題是;運(yùn)算量大、抗噪性蓑、不能跟蹤較贏速度的運(yùn)動(dòng)墾挺:特縫光浚法可較好f}鏨瓣決上述l、蠢題。本文對(duì)光浚法建予運(yùn)動(dòng)爨標(biāo)躐黥避行了磺突,主要工作鰩下:1.對(duì)攀予鑿率的角點(diǎn)檢溺算法和Plessy角點(diǎn)檢測(cè)算法做了理論分析和實(shí)驗(yàn)琵較,通過(guò)對(duì)角煮稔測(cè)算法靜三個(gè)瞧能指標(biāo)(穩(wěn)定襤、可靠性和抗嗓性)酌定量評(píng)價(jià)表明,基于曲率的角點(diǎn)檢測(cè)算法比Plessy角點(diǎn)檢測(cè)算法性能更好。2.研究了經(jīng)典基于微分的光流計(jì)算方法
2、茅口五點(diǎn)約束光流算法,繪出了魏弛算法用于運(yùn)動(dòng)目標(biāo)提取的仿輿實(shí)驗(yàn)比較。實(shí)驗(yàn)結(jié)果表明:五點(diǎn)約束光流箕法具有糖發(fā)毫,計(jì)算速度姨的特點(diǎn)。3。將五點(diǎn)約束光淡算法皮用于不同的運(yùn)動(dòng)目標(biāo)嬲像跟蹤,仿褰結(jié)果表明該方法在跟蹤運(yùn)動(dòng)葦鑭辯,靈縫跟蹤囂櫟大致輪瘁,毽不能給掰完熬讖藩。4.磷究了特,霞光滾簿予運(yùn)動(dòng)瓣標(biāo)圖像跟蹤靜溺越,針對(duì)鞋往運(yùn)動(dòng)昏際實(shí)時(shí)踉蹤圈難和經(jīng)歷旋轉(zhuǎn)時(shí)的失躐問(wèn)題,給出了光流聚類規(guī)則,礙f入矩特征進(jìn)行矩特征蔽配,幽就提島了基于澈特征和特征光流的運(yùn)動(dòng)目標(biāo)圖像鼴稼方法。5.詳細(xì)給出了基于矩特缸和特征光流的運(yùn)動(dòng)目標(biāo)跟蹤方法的算沒(méi)流稷,并進(jìn)行了圖像舅
3、標(biāo)跟蹤仿真。仿真結(jié)果襲明本文提出黢圖像跟踩算法在跟蹤速度,跟蹤精度.和克服旋轉(zhuǎn)三方顢性能優(yōu)越,同時(shí)目標(biāo)做30度以內(nèi)的旋轉(zhuǎn)時(shí),能夠穩(wěn)定數(shù)跟爨遴動(dòng)娶標(biāo)。關(guān)鍵蠲;踅像痔剜、光流法、特短光流、運(yùn)渤舀稱跟蹤、矩特征阿北T業(yè)人學(xué)塒
4、f學(xué)位論文ABSTRACTThesequenceimagetrackingisanextremelyimportantprobleminthefieldofcomputervision.Theopticalflowmethodshavebeenputintoabetterapplicationindetectiona
5、ndtrackingofmovingobjectsforsequenceimage.Butthemethodshavethefollowingfaults:heavycomputationalburdenandweakanti—noiseability.Furthermore,itcannottrackthemovingobjectswithhighspeed,了kfeature·optical—flowmethodhasthebettersolutionsforthefaults.Thethesisresearchesthefea
6、ture*opticalflowmethodOilthetrackingmovingobjects;themainworksareasfollows:1.Thetheoreticalanalysisandtheexperimentalcomparisonaregivenforcornerdetectionbasedonthecurvaturealgorithmand攮ePlessycomerdetectionalgorithm,F(xiàn)orthetwocornerdetectionalgorithms,threequantitativee
7、valuations(stability,reliabilityandanti-noise)showthattheperformanceofcomerdetectionalgorithmbasedonthecurvatureiSbetterthanthePlessycomerdetection.2。TheclassicalopticalflowmethodsbasedOndifferencetheoryandbasedonfive—pointrestraintsareresearched.Theperformancecomparis
8、onsofthetwoalgorithmsonextractionofmovingobjectsaregiven.Thesimulationresultsconfirmthatfive-pointrestraintsopticalflowalgorithmhasthebetterprecisionwithlesscomputationalburden.3.Thefive‘pointrestraintsopticalflowalgorithmisappliedtotrackingmovingobjects.Simulationresu
9、ltsdemonstratethatwhentrackingmovingvehiclesthisalgorithmcanonlyobtaintheoutlinesinsteadofthewholepicture.4.Theproble