資源描述:
《基于tm影像的沱江中游土壤重金屬預(yù)測(cè)研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、萬方數(shù)據(jù)AbstractAimingatfindingoutaneasyandquickmonitoringmethodonquantifyingtheheavymetalpollutionofsoil,thisstudyestablishesalinearregressionpredictionmodelbyusingeachbandspectralreflectanceofTMremote—sensingimage,9vegetationindexes,4groundcofactors,andthemeasuredva
2、lueofheavymetalcontentof80%samplesoil.ThismodeltakesthefactorswhicharenotinvolvedinthemodelingbuthavesignificantcorrelationwithheavymetalcontentofsoilascorrectionfactorsandinnsMonteCarlosimulation.Therest20%samplesoilbecomescheckingpointtOdothetrendanalysisanderro
3、rstatisticstestforallkindsofmodels.Intheend.thisstudyinvertsthespatialdistributionofmeasuredvalueandpredictedvalueandcontraststheirdifferenceswithordinarykrigingmethod.Themainconelusionsareasfollows.UsingtheTMimagespectruminformationandotherfactorscanpredictthecon
4、tentofAs,Hg,Cr,Cd,Cu,Pb,AvailableMn,AvailableFeandAvailableZn,modelofAvailableFeisbetter.ModelingfactorsareextractedfromTMremotesensingimagesanddigitalelevationmodel,whichiseasytoget,calleffectivelysavecostandtime.Allthethreekindsofmodeling,separatemodelingforeach
5、bandspectralreflectivityofremote.sensingimage,commonmodelingwithgroundfactors,separatemodelingfordifferentlandforms,canpredictheavymetalcontent(P6、nhasaprogressiveincrease.Therefore,itisnecessarytoestablishpredictionmodelbasedondifferentlandformswhenusingremotesensingtostudysoilheavymetalincomplex—landformareas.MonteCarlosimulationcancorrectthepredictionmodels.Comparedwiththedataoflinearregressionpredictionm
7、odel,theroot·mean—square-errorofarsenic,mercBry,chromium,cadmium,copper,lead,activemanganese,activeferric,andactivezincarerespectivelyreduced22.7%,18.O%,37.7%,36.2%,13.5%,30.5%,5.4%,25.2%,and1.1.9%aftercorrectedbyMonteCarlosimulation,whichindicatesthatMonteCarlosi
8、mulationcanimprovethemodelprecision,butthedifferencesbetweencorrectionfactorsandtheII萬方數(shù)據(jù)degreeofcorrelationoftargetvaluecanmakedifferentcorrectionfacto