基于標簽協(xié)同過濾算法在微博推薦中的分析

基于標簽協(xié)同過濾算法在微博推薦中的分析

ID:33486561

大?。?87.73 KB

頁數(shù):54頁

時間:2019-02-26

基于標簽協(xié)同過濾算法在微博推薦中的分析_第1頁
基于標簽協(xié)同過濾算法在微博推薦中的分析_第2頁
基于標簽協(xié)同過濾算法在微博推薦中的分析_第3頁
基于標簽協(xié)同過濾算法在微博推薦中的分析_第4頁
基于標簽協(xié)同過濾算法在微博推薦中的分析_第5頁
資源描述:

《基于標簽協(xié)同過濾算法在微博推薦中的分析》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫。

1、內(nèi)蒙古科技大學碩士學位論文AbstractWiththevigorousdevelopmentofWeb2.0technology,theglobalinternethasenteredthenetworkinteractiveage.ThebirthanddevelopmentofmicroblognetworkhasboughtenormousinfluencetothetransmittingstyleoftheInternetandusers'everydaylife.Userscanlistentoanytopicthattheylik

2、e,beclosedtodailylifeandprofessionalfieldbyusingmicroblogplatform.Withtheriseofthemicroblogusers,themicrobloginformationalsomultipliedgrowth.Findingtheuserswhohavecommoninterestswithyouinmanymicroblogusersisjustwanttogetinformation.Therefore,recommendingfriendswithcommontaste

3、stomicroblogusershasbecomethefocusofthispaper.Thispaperstudiedtheexistingsocialnetworkfriendrecommendationalgorithm,throughsummarizinglearningrecommendationalgorithmtheoryknowledge,andcombinedwiththecharacteristicsofmicroblogusersfriends,agoodfriendrecommendationalgorithmbase

4、donassociationrulesandtagpersonalizedwasproposed,whichrecommendedthemostsimilarusertotargetedcustomerforitsgoodfriends.Firstly,relatedconceptsoffriendsrecommendinmicroblogweredefined,andthefriendsrecommendsystemimplementationprocesswasintroduced;secondly,calculationmethodsabo

5、utcommonfriendsrelationshipbetweenuserswerepresented,whichwasbasedonassociaterulealgorithm,andthencalculationmethodsaboutthesimilaritybetweentheuserwerepresented,whichwasbasedontagsimilarityalgorithm;finally,co-mbiningwithcommonfriendsrelationshipandtagsimilarity,thecalculati

6、onmethodbasedonpersonalizedfriendsrecommendedwasdeduced.Intheendoftheexperiment,firstthemicroblogpersonalizedfriendsrecommendsystemwasdesigned,whichprovidedexperimentalplatformsupportforperformancetestofthealgorithm.Thenweightvaluetestandalgorithmperformancetestwereca-rriedou

7、tbyusinggoodfriendsrecommendsystemrespectively.Thereinto,theweightvalueexperimentalresultsshowthatpersonalizedrecommendationalgorithmattainedtotheoptimumwhentheweightvaluewas0.6.Atthelast,comparedwiththeexistingthreefriendsalgorithm,theoptimizationsuitabilityofpersonalizedfri

8、endsrecom-mendationalgorithmwasderived,whichindicatedcombinedpersona

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。