基于多元統(tǒng)計分析的聚類方法new

基于多元統(tǒng)計分析的聚類方法new

ID:33489942

大小:580.14 KB

頁數(shù):48頁

時間:2019-02-26

基于多元統(tǒng)計分析的聚類方法new_第1頁
基于多元統(tǒng)計分析的聚類方法new_第2頁
基于多元統(tǒng)計分析的聚類方法new_第3頁
基于多元統(tǒng)計分析的聚類方法new_第4頁
基于多元統(tǒng)計分析的聚類方法new_第5頁
資源描述:

《基于多元統(tǒng)計分析的聚類方法new》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、ClusteringMethodsApplicationsofMultivariateStatisticalAnalysisJiangshengYucSchoolofElectronicsEngineeringandComputerSciencePekingUniversity,Beijing,100871yujs@pku.edu.cn,http://icl.pku.edu.cn/yujsClusteringMethods–p.1/48Topics1.What'sclustering?2.SimilarityMeasures3.Hierarch

2、icalClusteringMethods4.NonhierarchicalClusteringMethods5.MultidimentionalScaling6.CorrespondenceAnalysis7.BiplotsforViewingSamplingUnitsandVariables8.ProcrustesAnalysis:AMethod9.Conclusion10.ReferencesClusteringMethods–p.2/48ClusteringProblemExploratoryproceduresarehelpfulin

3、understandingthecomplexnatureofmultivariaterelationships.Problem1Givenasetofdatafx2Rpg,satisfyingi1.thenumberofclassesisunknown;2.theclassofanyindividualisunknown.Weintendto1.de?nesomesuitablestatistics;2.clarifythenumberofclassesK;3.?ndareasonableclusteringmethod;and4.class

4、ifythedataintoKcategories.aaSo,clusteringisalsocalledunsupervisedclassi?cation.ClusteringMethods–p.3/48ExampleofClusteringPartitionagivensetbysomesimilarity:Figure1:fuzzyc-meansclusteringClusteringMethods–p.4/48ObservationMatrixGivennsamplepoints,eachhasmvariables:X1Xj

5、Xmx1x11x1jx1m......xixi1xijxim......xnxn1xnjxnmmeanx1xixmstds1sismTable1:ObservationdataClusteringMethods–p.5/48NoBestClusteringMethod

6、}~?AKQJClusteringMethods–p.6/48ClusterMethods1.SystemMethod:mergethemostsimilarclasses,updatethedataandrepe

7、attheproceduretillalldataareclassi?ed.2.DynamicMethod:giveaninitialclassi?cationofdata?rstly,thenadjusttheclassesbyleastvalueoflossfunctiontillnoimprovementcanmade.3.FuzzyMethod:forinstancefuzzyc-meansclustering,usuallyworkswellfordatawithfuzzycharacteristics.4.MethodofMinim

8、umSpanningTree5.ClusteringMethods–p.7/48TransformationofDataCentralization:makethemean0,andthevariance-covariancematrixunchanged.xij=xij