資源描述:
《Neural network based framework for fault diagnosis in batch chemical plants.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、Computers&ChemicalEngineeringELSEVIERComputersandChemicalEngineering24(2000)777-784www.elsevier.com/locate/compchemengNeuralnetworkbasedframeworkforfaultdiagnosisinbatchchemicalplantsDiegoRuiza,Jos~MariaNougu~sa,ZulyCalder6nb,AntonioEspufiaa,LuisPuigjanera,,aChemicalEngineeringDepartment
2、,UniversitatPolit~cnicadeCatalunya,Av.Diagonal647,E-08028Barcelona,SpainbUniversidadIndustrialdeSantander,EscueladelnginerladePetrdleos,AA.678,Bucaramanga,ColombiaAbstractInthiswork,anartificialneuralnetwork(ANN)basedframeworkforfaultdiagnosisinbatchchemicalplantsispresented.TheproposedF
3、DSconsistsofanANNstructuresupplementedwithaknowledgebasedexpertsystem(KBES)inablock-orientedconfiguration.ThesystemcombinestheadaptivelearningdiagnosticprocedureoftheANNandthetransparentdeepknowledgerepresentationoftheKBES.TheinformationneededtoimplementtheFDSincludesahistoricaldatabaseo
4、fpastbatches,ahazardandoperability(HAZOP)analysisandamodelofthebatchplant.ThehistoricaldatabasethatincludesinformationrelatedtonormalandabnormaloperatingconditionsisusedtotraintheANNstructure.Thedeviationsoftheon-linemeasurementsfromareferenceprofileareprocessedbyamulti-scalewaveletinord
5、ertodeterminethesingularitiesofthetransientsandtoreducethedimensionalityofthedata.TheprocessedsignalsaretheinputsofanANN.TheANNsoutputsarethesignalsofthedifferentsuspectedfaults.TheHAZOPanalysisisusefultobuildtheprocessdeepknowledgebase(KB)oftheplant.Thisbasereliesontheknowledgeoftheoper
6、atorsandengineersabouttheprocessandallowstheformulationofartificialintelligencealgorithms.Thecasestudycorrespondstoabatchreactor.TheFDSperformanceisdemonstratedthroughthesimulationofdifferentprocessfaults.TheFDSproposedisalsocomparedwithotherapproachesbasedonmulti-wayprincipalcomponentan
7、alysis.?2000ElsevierScienceLtd.Allrightsreserved.Keywords:Faultdiagnosis;Batchplants;Artificialneuralnetworks1.Introductionquencesofabnormalsituationscanbeanticipated.Arobustfaultdiagnosissystem(FDS),thattimelypro-videsthefaultinformationtoboththesupervisoryandSupervision