資源描述:
《web服務(wù)社區(qū)構(gòu)建方法的研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、萬(wàn)方數(shù)據(jù)東北大學(xué)碩士學(xué)位論文AbstractCo。ctionMethodnstruU0CtlonAbstractInordertomanageWebserviceresourceseffectively,Webservicecommunitycomesup.WebservicecommunityisdefinedasthecollectionofWrebserviceswimthesamefunctionalpropertyanddifferentnon-functionalones.Withtheincreasingcomplexb
2、usinessprocessesandreusedcomponents,Webservicecommunityisappliedintherangeofbothatomicandlarge—granularityWebservices.ServicediscoveryandreplacementbasedonservicecommunityCanimprovetheefficiencyofservicecomposition.ThetraditionalWebservicecommunityconstructionmethodisim
3、plementedthroughusers’manualregistration,whichhasalowefficiencyandisdifficulttoorganizeandmanageserviceresourceseffectively.Therefore,howtoconstructW曲servicecommunityautomaticallyhasbecomeanimportantaspectintheresearchofservicediscovery.Fortheaboveissues,thisthesispropo
4、sesaWebservicecommunitymulti-layermodel.111emodelcontainstwolayersoftheatomicWebservicecommunityandlarge—granularityone.DuringtheprocessofWebservicecommunityconstruction,basedonsomemethodsrelatedtocomplexnetwork,thisthesisproposesanatomicWebservicecommunityconstructionm
5、ethodbasedonweightedGNalgorithmandalarge-granularityWebservicecommunityconstructionmethodbasedonDW-Newmanalgorithm.TheweightedGNalgorithmmakessimilaratomicWebservicesinthesamecommunitybyminingthecommuni夠insimilarrelation-basedWebservicecomplexnetwork.AndtheDW-Newmanalgo
6、rithmminesthecommunityininvokablerelation-basedWebservicecomplexnetworkandextractsthepathsbetweencertaintwonodestodiscoverlarge—granularityWebservices.Themethodmakeslarge-granularityWebserviceswhichhavesimilarfunctionsorbelongtothesanlebusinessareainthesamecommunity.For
7、theproposedmethods,thisthesiscarriesoutthenumerouscorrelationexperimentsbasedonthedatasetofChinaWebServiceCup.BesidesconstrctingWebservicecommunities,thecommunityatomicservicesimilaritymodelandthecommunitylarge—granularityoneareproposedtoanalyzetherationalityofconstruct
8、ionresults.Theexperimentalresultsshowthatcomparedwimthetraditionalcommunitydetectionalgorithmsofcomplexnetwork