2008-MCMC methods for Bayesian Inference.pdf

2008-MCMC methods for Bayesian Inference.pdf

ID:34248096

大?。?62.48 KB

頁數(shù):84頁

時間:2019-03-04

2008-MCMC methods for Bayesian Inference.pdf_第1頁
2008-MCMC methods for Bayesian Inference.pdf_第2頁
2008-MCMC methods for Bayesian Inference.pdf_第3頁
2008-MCMC methods for Bayesian Inference.pdf_第4頁
2008-MCMC methods for Bayesian Inference.pdf_第5頁
資源描述:

《2008-MCMC methods for Bayesian Inference.pdf》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、MCMCmethodsforBayesianInferenceA.TaylanCemgilSignalProcessingandCommunicationsLab.5R1StochasticProcessesMarch06,2008Cemgil5R1StochasticProcesses,MCMCmethodsforBayesianInference.March06,2008OutlineGoal:ProvidemotivatingexamplestothetheoryofMarkovchains(thatSum

2、eetSinghhascovered)?BayesianInference,ProbabilitymodelsandGraphicalmodelnotation?TheGibbssampler?Metropolis-Hastings,MCMCTransitionKernels,?Sketchofconvergenceresults?SimulatedannealinganditerativeimprovementCemgil5R1StochasticProcesses,MCMCmethodsforBayesian

3、Inference.March06,20081Bayes’TheoremThomasBayes(1702-1761)“WhatyouknowaboutaparameterλafterthedataDarriveiswhatyouknewbeforeaboutλandwhatthedataDtoldyou1.”p(D

4、λ)p(λ)p(λ

5、D)=p(D)Likelihood×PriorPosterior=Evidence1(Janes2003(ed.byBretthorst);MacKay2003)Cemgil5R1

6、StochasticProcesses,MCMCmethodsforBayesianInference.March06,20082AnapplicationofBayes’Theorem:“SourceSeparation”Giventwofairdicewithoutcomesλandy,D=λ+yWhatisλwhenD=9?Cemgil5R1StochasticProcesses,MCMCmethodsforBayesianInference.March06,20083“Burocratical”deriv

7、ationFormallywewritep(λ)=C(λ;[1/61/61/61/61/61/6])p(y)=C(y;[1/61/61/61/61/61/6])p(D

8、λ,y)=δ(D?(λ+y))1x=0Kroneckerdeltafunctiondenotingadegenerate(deterministic)distributionδ(x)=0x6=01p(λ,y

9、D)=×p(D

10、λ,y)×p(y)p(λ)p(D)1Posterior=×Likelihood×PriorEvidenceXp(λ

11、D)=p

12、(λ,y

13、D)PosteriorMarginalyCemgil5R1StochasticProcesses,MCMCmethodsforBayesianInference.March06,20084AnapplicationofBayes’Theorem:“SourceSeparation”D=λ+y=9D=λ+yy=1y=2y=3y=4y=5y=6λ=1234567λ=2345678λ=3456789λ=45678910λ=567891011λ=6789101112Bayestheorem“upgrades”p

14、(λ)intop(λ

15、D).Butyouhavetoprovideanobservationmodel:p(D

16、λ)Cemgil5R1StochasticProcesses,MCMCmethodsforBayesianInference.March06,20085AnotherapplicationofBayes’Theorem:“ModelSelection”Givenanunknownnumberoffairdicewithoutcomesλ1,λ2,...,λn,XnD=λii=1Howmanydicear

17、etherewhenD=9?AssumethatanynumbernisequallylikelyCemgil5R1StochasticProcesses,MCMCmethodsforBayesianInference.March06,20086AnotherapplicationofBayes’Theorem:“ModelSelection”Givenallnareeq

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。