Very Deep Convolutional Networks for Large-Scale Image Recognition.pdf

Very Deep Convolutional Networks for Large-Scale Image Recognition.pdf

ID:34364749

大?。?17.94 KB

頁數(shù):10頁

時間:2019-03-05

Very Deep Convolutional Networks for Large-Scale Image Recognition.pdf_第1頁
Very Deep Convolutional Networks for Large-Scale Image Recognition.pdf_第2頁
Very Deep Convolutional Networks for Large-Scale Image Recognition.pdf_第3頁
Very Deep Convolutional Networks for Large-Scale Image Recognition.pdf_第4頁
Very Deep Convolutional Networks for Large-Scale Image Recognition.pdf_第5頁
資源描述:

《Very Deep Convolutional Networks for Large-Scale Image Recognition.pdf》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、VeryDeepConvolutionalNetworksforLarge-ScaleImageRecognitionKarenSimonyanAndrewZissermanVisualGeometryGroup,UniversityofOxford{karen,az}@robots.ox.ac.ukAbstractInthisworkweinvestigatetheeffectoftheconvolutionalnetworkdepthonitsaccuracyinthelarge-scaleimagerecogni

2、tionsetting.Ourmaincontributionisathoroughevaluationofnetworksofincreasingdepth,whichshowsthatasigni?-cantimprovementontheprior-artcon?gurationscanbeachievedbypushingthedepthto16–19weightlayers.These?ndingswerethebasisofourImageNetChallenge2014submission,whereou

3、rteamsecuredthe?rstandthesecondplacesinthelocalisationandclassi?cationtracksrespectively.1IntroductionConvolutionalnetworks(ConvNets)haverecentlyenjoyedagreatsuccessinlarge-scalevisualrecognition[10,16,17,19]whichhasbecomepossibleduetothelargepublicimagereposito

4、ries,suchasImageNet[4],andhigh-performancecomputingsystems,suchasGPUsorlarge-scaledis-tributedclusters[3].Inparticular,animportantroleintheadvanceofdeepvisualrecognitionarchi-tectureshasbeenplayedbytheImageNetLarge-ScaleVisualRecognitionChallenge(ILSVRC)[1],whic

5、hhasservedasatestbedforafewgenerationsoflarge-scaleimageclassi?cationsystems,fromhigh-dimensionalshallowfeatureencodings[13](thewinnerofILSVRC-2011)todeepCon-vNets[10](thewinnerofILSVRC-2012).WithConvNetsbecomingmoreofacommodityinthecomputervision?eld,anumberofa

6、ttemptshavebeenmadetoimprovetheoriginalarchitectureof[10]inabidtoachievebetteraccuracy.Forinstance,thebest-performingsubmissionstotheILSVRC-2013[16,19]utilisedsmallerreceptivewindowsizeandsmallerstrideofthe?rstconvolutionallayer.Anotherlineofimprovementsdealtwit

7、htrainingandtestingthenetworksdenselyoverthewholeimageandovermultiplescales[7,16].arXiv:1409.1556v2[cs.CV]15Sep2014Inthispaper,weaddressanotherimportantaspectofConvNetarchitecturedesign–itsdepth.Tothisend,we?xotherparametersofthearchitecture,andsteadilyincreaset

8、hedepthofthenetworkbyaddingmoreconvolutionallayers.Therestofthepaperisorganisedasfollows.InSect.2,wedescribeourConvNetcon?gurations.Thedetailsoftheimageclassi?cationt

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。