資源描述:
《applications of approach theory in functional analysis》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、ApplicationsofApproachTheoryinFunctionalAnalysisR.Lowen,M.SioenUniversiteitAntwerpen,RUCADepartementWiskundeenInformaticaGroenenborgerlaan1712020Antwerpen,Belgiume-mail:lowen@ruca.ua.ac.be,sioen@ruca.ua.ac.beAbstractStartingfromanormedrealvectorspace(X;jjjj),weintroduceauniformapproach
2、structureonXthetopologicaland1p-metriccore-0
ectionofwhicharetheweaktopologyandthemetricd.We(X;X)jjjjinvestigatethepropertiesofthisintroducedapproachstructure,obtainingquantitativeresultswhichimplytheirclassicalqualitativecounterparts.AMSSubjectClassication:46B10,46M99,54B30,54E99Keyw
3、ordsandphrases:Normedspace,weaktopology,weak*to-pology,uniformapproachspace,re
exivity,measureofcompactness,completeless,completion1IntroductionInthestudyofnormedlinearspacesandtheirduality,theso-calledweaktopol-ogyplaysanimportantrole.Itisoutofnecessity,unfortunately,thatweloosethecanon
4、icalnumericalinformationwedisposeofinthegivennormedspacewhenconsideringthisweakstructure.Thereasonforthisisthatitisformedoutoftheoriginalnormedobjectbytakinganinitiallifting,whichofcoursecanbeconstructedonthetopological,butfailstoexistonthenormedormetriclevel.Thesolutionweinvestigateinth
5、ispaperissteppingoutsidethetopologicalsettingintothebroadernumericalframeworkofapproachspacesasintroducedin(R.Lowen[10]),inwhichtheseinitialliftingscanbeperformedinawaycompatiblewiththewell-studiedtopologicalobjects.Itisouraimtopresentastudyofthebasicpropertiesoftheintroducedstructureand
6、toshowthatmanyclassicalresultsnowcanbeobtainedassimplecorollaries.AspirantvanhetBelgischNationaalFondsvoorWetenschappelijkOnderzoek251ApplicationsofApproachTheoryinFunctionalAnalysis2522PreliminariesIn(R.Lowen[10])"approachspaces"wereintroducedtoanswerthequestionwhatnumericalinformation
7、canbepreserved,whilemaintainingcompatibiltywiththeunderlyingtopologies,whenconstructingproducts,quotientsandco-productsofmetricspaces,sincethemetricstructureisextremelyunstablewithrespecttothementionedconstructions.Foranyinformation,notations,deni-tionsandtheoremsconcern