資源描述:
《Springer.Michele.Audin.Geometry.(Springer.2003)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、Mich`eleAudinGeometryMich`eleAudinInstitutdeRechercheMath′ematiqueAvanc′ee,Universit′eLouisPasteuretCNRS,7rueRen′eDescartes,67084Strasbourgcedex,France.E-mail:Michele.Audin@math.u-strasbg.frUrl:http://www-irma.u-strasbg.fr/~maudin27thMay2002GeometryMich`eleAudinContentsIntroduction.....
2、...................................................11.Thisisabook...................................................12.Howtousethisbook............................................23.AbouttheEnglishedition........................................34.Acknowledgements........................
3、......................3I.A?neGeometry..................................................71.A?nespaces....................................................72.A?nemappings..................................................143.Usinga?nemappings:threetheoremsinplanegeometry........234.Appendix
4、:afewwordsonbarycenters..........................265.Appendix:thenotionofconvexity................................286.Appendix:Cartesiancoordinatesina?negeometry..............30Exercisesandproblems............................................32II.EuclideanGeometry,Generalities...........
5、.................431.Euclideanvectorspaces,Euclideana?nespaces..................432.Thestructureofisometries......................................463.Thegroupoflinearisometries....................................52Exercisesandproblems............................................58III.Euc
6、lideanGeometryinthePlane............................651.Angles............................................................652.Isometriesandrigidmotionsintheplane........................763.Planesimilarities................................................794.Inversionsandpencilsofcircles
7、..................................83Exercisesandproblems............................................98IV.EuclideanGeometryinSpace................................1131.Isometriesandrigidmotionsinspace............................1132.Thevectorproduct,withareacomputations..........