visual object tracking based on mean-shift and particle-kalman filter視覺(jué)物體跟蹤基于均值漂移和particle-kalman過(guò)濾器

visual object tracking based on mean-shift and particle-kalman filter視覺(jué)物體跟蹤基于均值漂移和particle-kalman過(guò)濾器

ID:35034636

大小:6.47 MB

頁(yè)數(shù):86頁(yè)

時(shí)間:2019-03-16

visual object tracking based on mean-shift and particle-kalman filter視覺(jué)物體跟蹤基于均值漂移和particle-kalman過(guò)濾器_第1頁(yè)
visual object tracking based on mean-shift and particle-kalman filter視覺(jué)物體跟蹤基于均值漂移和particle-kalman過(guò)濾器_第2頁(yè)
visual object tracking based on mean-shift and particle-kalman filter視覺(jué)物體跟蹤基于均值漂移和particle-kalman過(guò)濾器_第3頁(yè)
visual object tracking based on mean-shift and particle-kalman filter視覺(jué)物體跟蹤基于均值漂移和particle-kalman過(guò)濾器_第4頁(yè)
visual object tracking based on mean-shift and particle-kalman filter視覺(jué)物體跟蹤基于均值漂移和particle-kalman過(guò)濾器_第5頁(yè)
資源描述:

《visual object tracking based on mean-shift and particle-kalman filter視覺(jué)物體跟蹤基于均值漂移和particle-kalman過(guò)濾器》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)

1、碩士留學(xué)生學(xué)位論文VisualObjectTrackingBasedonMean-shiftandParticleandandPPartP-KalmanFilter作者姓名IreneAnindaputriIswanto學(xué)科專業(yè)ElectricalandComputerEngineering指導(dǎo)教師李彬副教授所在學(xué)院AutomationScienceAndEngineering論文提交日期2016年5月23日VisualObjectTrackingBasedonMean-shiftandParticle-KalmanFilterADissertationSubmi

2、ttedfortheDegreeofMasterCandidate:IreneAnindaputriIswantoSupervisor:AssociateProfessorBinLiSouthChinaUniversityofTechnologyGuangzhou,China分類號(hào):學(xué)校代號(hào):10561學(xué)號(hào):201422800063華南理工大學(xué)碩士學(xué)位論文VisualObjectTrackingBasedonMean-shiftandParticle-KalmanFilter作者姓名:IreneAnindaputriIswanto指導(dǎo)教師姓名、職稱:李彬,副教授

3、申請(qǐng)學(xué)位級(jí)別:工程碩士學(xué)科專業(yè)名稱:電氣與計(jì)算機(jī)程研究方向:圖像處理論文提交日期:2016年05月23日論文答辯日期:2016年06月08日學(xué)位授予單位:華南理工大學(xué)學(xué)位授予日期:2016年06月25日答辯委員會(huì)成員:主席:LUGUONENGG委員:裴海龍,蘇為洲,李向陽(yáng),李彬gABSTRACTDuetotheincreasingofvideosurveillancesystemrequirements,Intelligentvideosurveillancesystemhasbecomechallengingtopicincomputervisionresea

4、rchfield.Therearefourkeystepsinintelligentvideosurveillancesystem,i.e.objectdetection,objectclassification,objecttracking,andobjectanalysis.Amongthesesteps,objecttrackingisconsideredascrucialandsignificanttaskinintelligentvideosurveillancesystem.Objecttrackingisconsideredasdifficultt

5、askbecauseofseveralproblemssuchasilluminationvariation,trackingnon-rigidobject,non-linearmotion,occlusion,andrequirementofrealtimeimplementation.Thereforeitisnecessarytobuildavisualobjecttrackingalgorithmwhichcanovercometheseproblems.Everysinglealgorithminvisualobjecttrackingalwaysha

6、sbothstrengthsanddrawbacks.Therefore,utilizingonlyonesinglealgorithmfortrackingusuallyisconsideredasinefficientbecauseeverysinglealgorithmhaslimitations.Basedonthisreason,inthisthesisatrackingalgorithmwhichcombinesmean-shiftandparticle-Kalmanfilterisproposed.Intheproposedmethod,mean-

7、shiftisusedasmastertrackerwhenthetargetobjectisnotoccluded.Whenocclusionisoccurredorthemean-shifttrackingresultisnotconvincing,particle-Kalmanfilterwillactasmastertrackertoimprovethetrackingresults.Experimentalshowsthattheproposedmethodcanworkwellindealingwithtrackingproblemssuchasno

8、n-rigidobjec

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。