10、00,fz(x)=-丄+],由(x)二-占~1二0,得x二1.XXX>1時(shí),f‘(x)>0;OVxVl時(shí),f‘(x)<0.???f(x)的單調(diào)增區(qū)間為(1,+8),單調(diào)減區(qū)間為(0,1).(2)解:Vf(x)=alnx-ax-3,/.f?(x)=—-a,x???(2,f(2))點(diǎn)切線傾斜角為45。,???f'(2)=1,即衛(wèi)?2二1,則a=-2,f'(x)=?丄+2,2x則g(x)=x3+x2(-2+2+衛(wèi))=x3+(2+更)x2-2x,x22g,(x)=3x2+(4+m)x-2,???函數(shù)不單調(diào),也就
11、是說在(t,3)范圍內(nèi),g'(x)二0有解,Vg(0)=-2<0,當(dāng)且僅當(dāng)g'(t)<0且g'(3)>0時(shí)方程有解,A3t2+(4+m)t-2V0且3X32-3(4+m)-2>0,解得-Vm<2-3t-4,又*/1[1,2],?VmV-9,3t3???m的取值范圍(?色,?9).321?解2(I)v/(.v)=2ax-—tInx,???廠(兀)=2“+丄+丄xjcx???/(X)=2^x-~-hlnA-=-處都取掃極值X22133a1僑以旳數(shù)/(x)在x=1與X=+處劑収射極值H=??3911cn)diCD矢h隔數(shù)Vy(x)-lnA:=-土X?丄在[丄,2】上注堿?33.V2
12、??-
13、/(兀)一/(2)—?6C)乃也1,依富盤仃丄A成7,???,”<丄z2*462<2)rn<2時(shí):0(丫)列:gE)m―m*?..7j.:?m"j‘A—.th6/n6/h7<().666乂丁二心2…冷“呂乎17C3)^m>2時(shí):&(大)冊(cè)乜(2)F-3m?「?4一3加2—丄?5且,18m<3-4s所以,實(shí)數(shù)加的取依范我為(-8,3二⑤
14、6】2分22解:(1)當(dāng)a二1時(shí),f,(x)二x-丄,x>O???k=f‘(1)二0X所以曲線y二f(x)在點(diǎn)(1,f(1))處的切線的斜率為0;(2)fy(x)二ex-丄,x>0XX①當(dāng)aWO時(shí),ff(x)<0,f(x)在(0,+°
15、°)上單調(diào)遞減;②當(dāng)40時(shí),令F(x)二0,解得x也.a當(dāng)*€(0,込)時(shí),fy(x)<0;當(dāng)區(qū)€迥,+8)時(shí),F(xiàn)(x)>0.aa???函數(shù)f(x)在(0,込內(nèi)單調(diào)遞減;在(逅,+8)內(nèi)單調(diào)遞增aa(3)存在aw(0,J),使得方程f(x)二2有兩個(gè)不等的實(shí)數(shù)根.理由如下:由(1)可知當(dāng)aWO時(shí),f,(x)<0,f(x)在(0,+8)上單調(diào)遞減,方程f(x)=2不可能有兩個(gè)不等的實(shí)數(shù)根;由(2)得,函數(shù)f(x)在(0,Ml)內(nèi)單調(diào)遞誠,在送,+8)內(nèi)單調(diào)遞増,aa使得方程f(X)二2有兩個(gè)不等的實(shí)數(shù)根,