獨(dú)立分量分析在盲信號(hào)分離中的應(yīng)用研究

獨(dú)立分量分析在盲信號(hào)分離中的應(yīng)用研究

ID:36837821

大?。?.94 MB

頁數(shù):56頁

時(shí)間:2019-05-16

獨(dú)立分量分析在盲信號(hào)分離中的應(yīng)用研究_第1頁
獨(dú)立分量分析在盲信號(hào)分離中的應(yīng)用研究_第2頁
獨(dú)立分量分析在盲信號(hào)分離中的應(yīng)用研究_第3頁
獨(dú)立分量分析在盲信號(hào)分離中的應(yīng)用研究_第4頁
獨(dú)立分量分析在盲信號(hào)分離中的應(yīng)用研究_第5頁
資源描述:

《獨(dú)立分量分析在盲信號(hào)分離中的應(yīng)用研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、重慶大學(xué)碩士學(xué)位論文中文摘要摘要近年來,信號(hào)處理的理論與方法獲得了迅速發(fā)展。事實(shí)證明,信號(hào)處理是推動(dòng)眾學(xué)科發(fā)展的一個(gè)重要基石。獨(dú)立分量分析技術(shù)(IndependentComponentAnalysis,簡稱ICA)是信號(hào)處理領(lǐng)域發(fā)展較晚的一種理論與方法,已迅速成為該領(lǐng)域內(nèi)重要的組成部分,且其發(fā)展逐漸趨向成熟化與系統(tǒng)化。本論文對(duì)獨(dú)立分量分析對(duì)于盲信號(hào)分離的應(yīng)用進(jìn)行了研究,主要工作如下:(1)搜集、整理、總結(jié)了國內(nèi)外獨(dú)立分量分析方面的成果和進(jìn)展,介紹了獨(dú)立分量分析的基本理論,并著重討論了幾種常用的獨(dú)立分量分析算法及其特點(diǎn)。(2)介紹了盲

2、信號(hào)分離的基本理論,并在最小互信息盲分離算法的基礎(chǔ)上提出了盲信號(hào)分離的基于模糊神經(jīng)網(wǎng)絡(luò)的獨(dú)立分量分析方法。(3)論文對(duì)基于模糊神經(jīng)網(wǎng)絡(luò)的ICA對(duì)于盲信號(hào)分離的應(yīng)用進(jìn)行了探討,制定了可行的統(tǒng)計(jì)獨(dú)立準(zhǔn)則、邊緣熵和激活函數(shù),詳細(xì)介紹了模糊神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)過程,并對(duì)算法的穩(wěn)定性和收斂性進(jìn)行了分析,通過計(jì)算機(jī)實(shí)驗(yàn)證實(shí)了該ICA算法對(duì)于盲信號(hào)分離的良好的性能,指標(biāo)顯示代表信號(hào)特征的信號(hào)的波形和頻率基本與源信號(hào)保持一致達(dá)到了較好的分離效果。與同類算法的性能比較表明該算法分離性能較好。關(guān)鍵詞:獨(dú)立分量分析,盲信號(hào)分離,模糊神經(jīng)網(wǎng)絡(luò),多道信號(hào),熵,互信

3、息I重慶大學(xué)碩士學(xué)位論文英文摘要ABSTRACTRecently,theoriesandmethodsofsignalprocessingareobtainedtodevelopquickly.Infact,signalprocessingisanimportantfoundationstoneforallkindsofsubjects'developing.Independentcomponentanalysis(ICA)technologydevelopingisalatertheoryormethodinfieldsofsig

4、nalprocessing,butitwasimportantthatithasrapidlybecomeapartofconstitutionofsignalprocessingfields,anditsdevelopingtendsgraduallytomaturityandsystematization.Inthispaper,thetheoryandapplicationofindependentcomponentanalysishasbeenstudied.Thepaperconsistsoffollowingparts:

5、1.First,thepaperreviewssystematicallythepresentresearchsituationofindependentcomponentanalysisintheworld.Thebasicprinciplesandconceptsofindependentcomponentanalysisandsomealgorithmsareintroduced.2.Second,aminimummutualinformationalgorithmbasedrecurrentneuralnetworksare

6、givenafterintroducedthebasictheoryaboutBlindSourceSeparation.Themainprinciple,derivationhasbeenpresented.3.Applicationresearchofblindsignalseparationbyusingindependentcomponentanalysishasbeenstudiedinthispaper.Thefeasibleindependencerule,brimentropyandactivationfunctio

7、nhavebeenestablished.Thedesignoffuzzyneuralnetworkshasbeenintroducedparticularly.Andtheperformanceofthealgorithmhasbeenillustratedbycomputationsimulationexperiment.Theresultdisplaytheperformanceofthisalgorithmisgood.Keywords:Independentcomponentanalysis,Blindsourcesepa

8、ration,Fuzzyneuralnetworks,Entropy,mutualinformation,II重慶大學(xué)碩士學(xué)位論文1緒論1緒論引言近幾年,盲源分離(BlindSourceSeparation:BSS)已經(jīng)成為信號(hào)處理領(lǐng)

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。