Painleve analysis of a class of diffusion equation

Painleve analysis of a class of diffusion equation

ID:37582511

大?。?97.44 KB

頁(yè)數(shù):10頁(yè)

時(shí)間:2019-05-25

Painleve analysis of a class of diffusion equation_第1頁(yè)
Painleve analysis of a class of diffusion equation_第2頁(yè)
Painleve analysis of a class of diffusion equation_第3頁(yè)
Painleve analysis of a class of diffusion equation_第4頁(yè)
Painleve analysis of a class of diffusion equation_第5頁(yè)
資源描述:

《Painleve analysis of a class of diffusion equation》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)

1、JournalofAppliedMathematicsandStochasticAnalysis9,Number1,1996,77-86PAINLEVEANALYSISOFACLASSOFNONLINEARDIFFUSIONEQUATIONSP.CHANDRASEKARANandE.K.RAMASAMIBharathiarUniversityDepartmentofMathematicsCoimbatore5106,INDIA(ReceivedOctober,1994;RevisedOctober,1995)ABSTRACTWestudythePainleveanalysisforacl

2、assofnonlineardiffusionequations.WefindthatinsomecasesithasonlytheconditionalPainlevepropertyandinothercases,justthePainleveproperty.Wealsoobtainedspecialsolutions.Keywords:Nonlinear-DiffusionEquation,PainleveAnalysis,PainleveEquation,SpecialSolutions.AMS(MOS)subjectclassifications:35Q51.1.Introd

3、uctionInrecentyears,muchattentionhasbeenfocusedonhigherordernonlinearpartialdifferentialequations,knownasevolutionequations.Suchnonlinearequationsoftenoccurinthedescriptionofchemicalandbiologicalphenomena.Theiranalyticalstudyhasbeendrawingimmenseinterest.Afundamentalquestionwhendealingwithnonline

4、ardifferentialequationsis"howcanonetellbeforehandwhetherornottheyareintegrable?"Originally,Ablowitzetal[1]conjectur-edthatanonlinearpartialdifferentialequationisintegrableifallitsexactreductionstoordinarydifferentialequationshavethePainleveproperty:thatis,tohavenomovablesingularitiesotherthanpole

5、s.Thisapproachposesanobviousoperationaldifficultyinfindingallexactreductions.ThisdifficultywascircumventedbyWeissetal[10]bypostulatingthatapartialdifferentialequa-tionhasthePainlevepropertyifitssolutionsaresingle-valuedaboutamovablesingularmanifold(z,z2,...,Zn)0,(1.1)whereisanarbitraryfunction.In

6、otherwords,asolutionu(zi)ofapartialdifferentialequationshouldhaveaLaurent-likeexpansionaboutthemovablesingularmanifold0:u(zi)[(zi)]uj(zi)(zi)j,(1.2)2--0whereaisanegativeinteger.Thenumberofarbitraryfunctionsinexpansion(1.2)shouldbeequaltotheorderofthepartialdifferentialequation.Insertingexpansion(

7、1.2)intothetargetedequationyieldsarecurrenceformulathatdeterminesUn(Zi)foralln>0,exceptforafinitenumberofrl,r2,r3,...,rj>0,calledresonances.Forsomeequations,therecurrenceformulasattheresonancevaluesmayresultinconstrain

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。