資源描述:
《A Theory of Physical Quantum Computation The Quantum Computer Condition》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、ATheoryofPhysicalQuantumComputation:TheQuantumComputerConditionGeraldGilbert,MichaelHamrickandF.JavierThayer??QuantumInformationScienceGroupMitre260IndustrialWayWest,Eatontown,NJ07724USAAbstract.Inthispaperwepresentanewuni?edtheoreticalframeworkthatdescribesthefulldynamicsofquantumcompu
2、tation.Ourformulationallowsanyquestionspertainingtothephysicalbehaviorofaquantumcomputertobeframed,andinprinciple,answered.Werefertothecentralorganizingprin-cipledevelopedinthispaper,onwhichourtheoreticalstructureisbased,astheQuantumComputerCondition(QCC),arigorousmathematicalstatementt
3、hatconnectstheirreversibledynamicsofthequantumcomputingmachine,withthereversibleoperationsthatcomprisethequantumcomputationin-tendedtobecarriedoutbythequantumcomputingmachine.ArmedwiththeQCC,wederiveapowerfulresultthatwecalltheEncodingNo-GoTheorem.Thistheoremgivesaprecisemathematicalsta
4、tementoftheconditionsunderwhichfault-tolerantquantumcomputationbecomesimpossibleinthepres-enceofdissipationand/ordecoherence.Inconnectionwiththistheorem,weexplicitlycalculateauniversalcriticaldampingvalueforfault-tolerantquan-tumcomputation.Inadditionweshowthattherecently-discoveredappr
5、oachtoquantumerrorcorrectionknownas“operatorquantumerror-correction”isaspecialcaseofourmoregeneralformulation.Ourapproachfurnisheswhatwewillrefertoas“operatorquantumfault-tolerance.”Inparticular,weshowhowtheQCCallowsonetoderiveerrorthresholdsforfaulttoleranceinacompletelygeneralcontext.
6、Weprovetheexistenceofsolutionstoaclassoftime-dependentgeneralizationsoftheLindbladequation.UsingtheQCC,wearXiv:quant-ph/0507141v220Jul2005alsoshowthattheseeminglydi?erentcircuit,graph-(includingcluster-)state,andadiabaticparadigmsforquantumcomputingareinfactallmanifestationsofasingle,un
7、iversalparadigmforallphysicalquantumcomputation.?ResearchsupportedunderMITRETechnologyProgramGrant51MSR211.?E-mailaddress:{ggilbert,mhamrick,jt}@mitre.org12GERALDGILBERT,MICHAELHAMRICKANDF.JAVIERTHAYERContents1.Introduction22.TheQuantumComputerCondition33.TheEncodingNo-GoTheore