資源描述:
《教學(xué)設(shè)計(jì)勾股》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、【教學(xué)設(shè)計(jì)】探索勾股定理(一)1.?探索勾股定理(第1課時(shí))教學(xué)目標(biāo):1.用數(shù)格子(或割、補(bǔ)、拼等)的辦法體驗(yàn)勾股定理的探索過(guò)程并理解勾股定理反映的直角三角形的三邊之間的數(shù)量關(guān)系,會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用.2.讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法.3.進(jìn)一步發(fā)展學(xué)生的說(shuō)理和簡(jiǎn)單推理的意識(shí)及能力;進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系.4.在探索勾股定理的過(guò)程中,體驗(yàn)獲得成功的快樂(lè);通過(guò)介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化歷史,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí).教學(xué)過(guò)程設(shè)計(jì)本節(jié)課設(shè)計(jì)了五個(gè)教
2、學(xué)環(huán)節(jié):第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課;第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理;第三環(huán)節(jié):勾股定理的簡(jiǎn)單應(yīng)用;第四環(huán)節(jié):課堂小結(jié);第五環(huán)節(jié):布置作業(yè).第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課2002年世界數(shù)學(xué)家大會(huì)在我國(guó)北京召開(kāi),投影顯示本屆世界數(shù)學(xué)家大會(huì)的會(huì)標(biāo):會(huì)標(biāo)中央的圖案是一個(gè)與“勾股定理”有關(guān)的圖形,數(shù)學(xué)家曾建議用“勾股定理”的圖來(lái)作為與“外星人”聯(lián)系的信號(hào).今天我們就來(lái)一同探索勾股定理.(板書(shū)課題)緊扣課題,自然引入,同時(shí)滲透愛(ài)國(guó)主義教育.第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理1.探究活動(dòng)一投影顯示如下地板磚示意圖,引導(dǎo)學(xué)生從面積角度觀察圖形:????問(wèn):你能發(fā)現(xiàn)各圖中三個(gè)正方形的面積之間
3、有何關(guān)系嗎?學(xué)生通過(guò)觀察,歸納發(fā)現(xiàn):結(jié)論1??以等腰直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積.從觀察實(shí)際生活中常見(jiàn)的地板磚入手,讓學(xué)生感受到數(shù)學(xué)就在我們身邊.通過(guò)對(duì)特殊情形的探究得到結(jié)論1,為探究活動(dòng)二作鋪墊.2.探究活動(dòng)二內(nèi)容:由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?(1)觀察下面兩幅圖:??????(2)填表:?A的面積B的面積C的面積(單位面積)(單位面積)(單位面積)左圖???右圖???(3)你是怎樣得到正方形C的面積的?與同伴交流.(學(xué)生可能會(huì)做出多種方法,教師應(yīng)給予充分肯定.)??????圖1
4、???圖2?圖3學(xué)生的方法可能有:方法一:如圖1,將正方形C分割為四個(gè)全等的直角三角形和一個(gè)小正方形,?.方法二:如圖2,在正方形C外補(bǔ)四個(gè)全等的直角三角形,形成大正方形,用大正方形的面積減去四個(gè)直角三角形的面積,.方法三:如圖3,正方形C中除去中間5個(gè)小正方形外,將周?chē)糠诌m當(dāng)拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個(gè)小正方形,按此拼法,.(4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?學(xué)生通過(guò)分析數(shù)據(jù),歸納出:結(jié)論2??以直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積.探究活動(dòng)二意在讓學(xué)生通過(guò)觀察、計(jì)算、探討、歸納進(jìn)一步
5、發(fā)現(xiàn)一般直角三角形的性質(zhì).由于正方形C的面積計(jì)算是一個(gè)難點(diǎn),為此設(shè)計(jì)了一個(gè)交流環(huán)節(jié).學(xué)生通過(guò)充分討論探究,在突破正方形C的面積計(jì)算這一難點(diǎn)后得出結(jié)論2.3.議一議內(nèi)容:(1)你能用直角三角形的邊長(zhǎng),,來(lái)表示上圖中正方形的面積嗎?(2)你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間存在什么關(guān)系嗎?(3)分別以5厘米、12厘米為直角邊作出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度.2中發(fā)現(xiàn)的規(guī)律對(duì)這個(gè)三角形仍然成立嗎?勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.如果用,,分別表示直角三角形的兩直角邊和斜邊,那么.?dāng)?shù)學(xué)小史:勾股定理是我國(guó)最早發(fā)現(xiàn)的,中國(guó)古代把直角三角形中較短的直角邊稱(chēng)
6、為勾,較長(zhǎng)的直角邊稱(chēng)為股,斜邊稱(chēng)為弦,“勾股定理”因此而得名.(在西方文獻(xiàn)中又稱(chēng)為畢達(dá)哥拉斯定理)議一議意在讓學(xué)生在結(jié)論2的基礎(chǔ)上,進(jìn)一步發(fā)現(xiàn)直角三角形三邊關(guān)系,得到勾股定理.第三環(huán)節(jié):勾股定理的簡(jiǎn)單應(yīng)用內(nèi)容:例題?如圖所示,一棵大樹(shù)在一次強(qiáng)烈臺(tái)風(fēng)中于離地面10m處折斷倒下,樹(shù)頂落在離樹(shù)根24m處.?大樹(shù)在折斷之前高多少?(教師板演解題過(guò)程)練習(xí):1.基礎(chǔ)鞏固練習(xí):求下列圖形中未知正方形的面積或未知邊的長(zhǎng)度(口答):????2.生活中的應(yīng)用: ?小明媽媽買(mǎi)了一部29?in(74?cm)的電視機(jī).?小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58?cm長(zhǎng)和46?cm寬,他
7、覺(jué)得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?你能解釋這是為什么嗎?第四環(huán)節(jié):課堂小結(jié)內(nèi)容:教師提問(wèn):1.這一節(jié)課我們一起學(xué)習(xí)了哪些知識(shí)和思想方法?2.對(duì)這些內(nèi)容你有什么體會(huì)?與同伴進(jìn)行交流.在學(xué)生自由發(fā)言的基礎(chǔ)上,師生共同總結(jié):1.知識(shí):勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.如果用,,分別表示直角三角形的兩直角邊和斜邊,那么.2.方法:(1)?觀察—探索—猜想—驗(yàn)證—?dú)w納—應(yīng)用;?????????(2)“割、補(bǔ)、拼、接”法.3.思想:(1)?特殊—一般—特殊;??????????(2)?數(shù)形結(jié)合思想.鼓勵(lì)學(xué)生積極大膽發(fā)言,可增進(jìn)師生、生生之間的交流、
8、互動(dòng).第五環(huán)節(jié):布置作業(yè)