《最短路徑問題》課件3

《最短路徑問題》課件3

ID:37908935

大?。?85.00 KB

頁數(shù):19頁

時間:2019-06-02

《最短路徑問題》課件3_第1頁
《最短路徑問題》課件3_第2頁
《最短路徑問題》課件3_第3頁
《最短路徑問題》課件3_第4頁
《最短路徑問題》課件3_第5頁
資源描述:

《《最短路徑問題》課件3》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫

1、課題學(xué)習(xí)最短路徑問題學(xué)習(xí)目標(biāo):能利用軸對稱解決簡單的最短路徑問題,體會圖形的變化在解決最值問題中的作用,感悟轉(zhuǎn)化思想.學(xué)習(xí)重點:利用軸對稱將最短路徑問題轉(zhuǎn)化為“兩點之間,線段最短”問題.課件說明引言:前面我們研究過一些關(guān)于“兩點的所有連線中,線段最短”、“連接直線外一點與直線上各點的所有線段中,垂線段最短”等的問題,我們稱它們?yōu)樽疃搪窂絾栴}.現(xiàn)實生活中經(jīng)常涉及到選擇最短路徑的問題,本節(jié)將利用數(shù)學(xué)知識探究數(shù)學(xué)史中著名的“將軍飲馬問題”.引入新知問題1相傳,古希臘亞歷山大里亞城里有一位久負(fù)盛名的學(xué)者,名叫海倫.有一天,一位將軍專程拜訪海倫,求教一個百思不得其解的問題:從圖中的

2、A地出發(fā),到一條筆直的河邊l飲馬,然后到B地.到河邊什么地方飲馬可使他所走的路線全程最短?探索新知BAl精通數(shù)學(xué)、物理學(xué)的海倫稍加思索,利用軸對稱的知識回答了這個問題.這個問題后來被稱為“將軍飲馬問題”.你能將這個問題抽象為數(shù)學(xué)問題嗎?探索新知BAl追問1這是一個實際問題,你打算首先做什么?將A,B兩地抽象為兩個點,將河l抽象為一條直線.探索新知B··Al(1)從A地出發(fā),到河邊l飲馬,然后到B地;(2)在河邊飲馬的地點有無窮多處,把這些地點與A,B連接起來的兩條線段的長度之和,就是從A地到飲馬地點,再回到B地的路程之和;探索新知追問2你能用自己的語言說明這個問題的意思,

3、并把它抽象為數(shù)學(xué)問題嗎?探索新知追問2你能用自己的語言說明這個問題的意思,并把它抽象為數(shù)學(xué)問題嗎?(3)現(xiàn)在的問題是怎樣找出使兩條線段長度之和為最短的直線l上的點.設(shè)C為直線上的一個動點,上面的問題就轉(zhuǎn)化為:當(dāng)點C在l的什么位置時,AC與CB的和最小(如圖).BAlC追問1對于問題2,如何將點B“移”到l的另一側(cè)B′處,滿足直線l上的任意一點C,都保持CB與CB′的長度相等?探索新知問題2如圖,點A,B在直線l的同側(cè),點C是直線上的一個動點,當(dāng)點C在l的什么位置時,AC與CB的和最小?B·lA·追問2你能利用軸對稱的有關(guān)知識,找到上問中符合條件的點B′嗎?探索新知問題2如

4、圖,點A,B在直線l的同側(cè),點C是直線上的一個動點,當(dāng)點C在l的什么位置時,AC與CB的和最???B·lA·作法:(1)作點B關(guān)于直線l的對稱點B′;(2)連接AB′,與直線l相交于點C.則點C即為所求.探索新知問題2如圖,點A,B在直線l的同側(cè),點C是直線上的一個動點,當(dāng)點C在l的什么位置時,AC與CB的和最???B·lA·B′C探索新知問題3你能用所學(xué)的知識證明AC+BC最短嗎?B·lA·B′C證明:如圖,在直線l上任取一點C′(與點C不重合),連接AC′,BC′,B′C′.由軸對稱的性質(zhì)知,BC=B′C,BC′=B′C′.∴AC+BC=AC+B′C=AB′,AC′+BC

5、′=AC′+B′C′.探索新知問題3你能用所學(xué)的知識證明AC+BC最短嗎?B·lA·B′CC′探索新知問題3你能用所學(xué)的知識證明AC+BC最短嗎?B·lA·B′CC′證明:在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.若直線l上任意一點(與點C不重合)與A,B兩點的距離和都大于AC+BC,就說明AC+BC最?。剿餍轮狟·lA·B′CC′追問1證明AC+BC最短時,為什么要在直線l上任取一點C′(與點C不重合),證明AC+BC<AC′+BC′?這里的“C′”的作用是什么?探索新知追問2回顧前面的探究過程,我們是通過怎樣的過程、

6、借助什么解決問題的?B·lA·B′CC′運(yùn)用新知練習(xí) 如圖,一個旅游船從大橋AB的P處前往山腳下的Q處接游客,然后將游客送往河岸BC上,再返回P處,請畫出旅游船的最短路徑.ABCPQ山河岸大橋運(yùn)用新知基本思路:由于兩點之間線段最短,所以首先可連接PQ,線段PQ為旅游船最短路徑中的必經(jīng)線路.將河岸抽象為一條直線BC,這樣問題就轉(zhuǎn)化為“點P,Q在直線BC的同側(cè),如何在BC上找到一點R,使PR與QR的和最小”.ABCPQ山河岸大橋歸納小結(jié)(1)本節(jié)課研究問題的基本過程是什么?(2)軸對稱在所研究問題中起什么作用?

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。