Interactive genetic algorithms with individual’s fuzzy fitness

Interactive genetic algorithms with individual’s fuzzy fitness

ID:37945036

大?。?.20 MB

頁數(shù):11頁

時間:2019-06-03

Interactive genetic algorithms with individual’s fuzzy fitness_第1頁
Interactive genetic algorithms with individual’s fuzzy fitness_第2頁
Interactive genetic algorithms with individual’s fuzzy fitness_第3頁
Interactive genetic algorithms with individual’s fuzzy fitness_第4頁
Interactive genetic algorithms with individual’s fuzzy fitness_第5頁
資源描述:

《Interactive genetic algorithms with individual’s fuzzy fitness》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。

1、ComputersinHumanBehavior27(2011)1482–1492ContentslistsavailableatScienceDirectComputersinHumanBehaviorjournalhomepage:www.elsevier.com/locate/comphumbehInteractivegeneticalgorithmswithindividual’sfuzzy?tnessDun-weiGong?,JieYuan,Xiao-yanSunSchoolofInformationandElectricalEngineering,ChinaUniv

2、ersityofMiningandTechnology,Xuzhou,ChinaarticleinfoabstractArticlehistory:InteractivegeneticalgorithmsareeffectivemethodstosolveanoptimizationproblemwithimplicitorAvailableonline30October2010fuzzyindices,andhavebeensuccessfullyappliedtomanyreal-worldoptimizationproblemsinrecentyears.Intradit

3、ionalinteractivegeneticalgorithms,manyresearchersadoptanaccuratenumbertoKeywords:expressanindividual’s?tnessassignedbyauser.Butitisdif?cultforthisexpressiontoreasonablyre?ectOptimizationauser’sfuzzyandgradualcognitivetoanindividual.WepresentaninteractivegeneticalgorithmwithanGeneticalgorithm

4、sindividual’sfuzzy?tnessinthispaper.Firstly,weadoptafuzzynumberdescribedwithaGaussianmem-Individual’s?tnessbershipfunctiontoexpressanindividual’s?tness.Then,inordertocomparedifferentindividuals,weFuzzynumbergeneratea?tnessintervalbasedona-cutset,andobtaintheprobabilityofindividualdominanceby

5、Fashiondesignuseoftheprobabilityofintervaldominance.Finally,wedeterminethesuperiorindividualintournamentselectionwithsizetwobasedontheprobabilityofindividualdominance,andperformthesubsequentevolutions.Weapplytheproposedalgorithmtoafashionevolutionarydesignsystem,atypicaloptimi-zationproblemw

6、ithanimplicitindex,andcompareitwithtwointeractivegeneticalgorithms,i.e.,aninteractivegeneticalgorithmwithanindividual’saccurate?tnessandaninteractivegeneticalgorithmwithanindividual’sinterval?tness.Theexperimentalresultsshowthattheproposedalgorithmisadvan-tageousinalleviatinguserfatigueandlo

7、okingforuser’ssatisfactoryindividuals.ó2010ElsevierLtd.Allrightsreserved.1.Introduction?tnessaremorelikelytobeselectedtogenerateindividualsinthenextgeneration.AnewgenerationofindividualsisgeneratedOptimizationproblemsareverycommoninreal-worldapplic

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。