A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHI

A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHI

ID:38212550

大小:80.23 KB

頁數(shù):6頁

時間:2019-05-27

A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHI_第1頁
A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHI_第2頁
A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHI_第3頁
A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHI_第4頁
A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHI_第5頁
資源描述:

《A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHI》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。

1、ACOMPARISONOFARTIFICIALNEURALNETWORKSANDOTHERSTATISTICALMETHODSFORROTATINGMACHINECONDITIONCLASSIFICATIONA.C.McCormickandA.K.NandiAbstractStatisticalestimatesofvibrationsignalssuchasthemeanandvariancecanprovideindicationoffaultsinrotatingmachinery.Usingtheseestimatesjoi

2、ntlycangiveamorerobustclassi cationthanusingeachindividually.Arti cialneuralnetworkarchitecturesandsomestatisticalalgorithmsarecomparedwithemphasisontrainingrequirementsandreal-timeimplementationaswellasoverallperformance.IntroductionAnalysisofvibrationscanindicatefaul

3、tconditionsinrotatingmachinery[1]suchasshaftunbalanceorrubbing.Onecommonapproachistoestimatetime-invariantfeaturesfromthevibrationtimeserieswhichchangewhenafaultoccursinthemachine.Thesefeaturescanthenbeinputintosomeformofclassi cationsystemtodecidethemachine'scondition

4、.Arti cialneuralnetworkssuchasmulti-layerperceptrons(MLPs)provideasystemwhichcantheo-reticallyprovideBayesoptimalclassi cationoftheconditionbaseduponmanyfeatures[2].Trainingnetworkscanhowevertakeasubstantiallengthoftimeandisnotguaranteedto ndtheoptimalso-lution.Radialb

5、asisfunction(RBF)neuralnetworksprovideanalternativearchitecturewhichcanbetrainedinamuchshorterperiodoftime.Traditionalstatisticaldiscriminantanalysis[3]algorithmscanbeverysimpletoimplementanddonotrequireatimeconsumingtrainingalgorithm.Butinmanycases,theyrequirecertaina

6、ssumptionstobemadeabouttheinputdata.Iftheseassumptionsarenotvalid,theymaynotprovideasgoodasolutionasaneuralnetwork.ExperimentalSet-UpThevibrationsweremeasuredfromasmallexperimentalmachineset.Thisconsistedofanelectricmotorwhichdroveashaftwitha ywheel.Smallweightscouldbe

7、attachedtothe ywheelunbalancingtheshaftandrubbingcouldbeappliedusingascrewattachedtoaframe.Thevibrationsweremeasuredhorizontallyandverticallyusingaccelerometersattachedtoabearingblock.Thisset-upallowedthecreationoffourmachineconditions:NN-nofaultsapplied;NR-onlytherubf

8、aultisapplied;WN-onlytheunbalancefaultisapplied;WR-bothrubandunbalancefaultsareapplied.TheshaftDepartmentofElectronic

當前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。