4.3 公式法(一) 利用平方差公式進(jìn)行因式分解

4.3 公式法(一) 利用平方差公式進(jìn)行因式分解

ID:38883852

大?。?5.50 KB

頁(yè)數(shù):6頁(yè)

時(shí)間:2019-06-20

4.3  公式法(一) 利用平方差公式進(jìn)行因式分解_第1頁(yè)
4.3  公式法(一) 利用平方差公式進(jìn)行因式分解_第2頁(yè)
4.3  公式法(一) 利用平方差公式進(jìn)行因式分解_第3頁(yè)
4.3  公式法(一) 利用平方差公式進(jìn)行因式分解_第4頁(yè)
4.3  公式法(一) 利用平方差公式進(jìn)行因式分解_第5頁(yè)
資源描述:

《4.3 公式法(一) 利用平方差公式進(jìn)行因式分解》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。

1、4.3公式法(一)利用平方差公式進(jìn)行因式分解●課題§4.3.公式法(一)●教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.使學(xué)生了解運(yùn)用公式法分解因式的意義;2.使學(xué)生掌握用平方差公式分解因式.3.使學(xué)生了解,提公因式法是分解因式的首先考慮的方法,再考慮用平方差公式分解因式.(二)能力訓(xùn)練要求1.通過(guò)對(duì)平方差公式特點(diǎn)的辨析,培養(yǎng)學(xué)生的觀察能力.2.訓(xùn)練學(xué)生對(duì)平方差公式的運(yùn)用能力.(三)情感與價(jià)值觀要求在引導(dǎo)學(xué)生逆用乘法公式的過(guò)程中,培養(yǎng)學(xué)生逆向思維的意識(shí),同時(shí)讓學(xué)生了解換元的思想方法.●教學(xué)重點(diǎn)讓學(xué)生掌握運(yùn)用平方差公式分解因式.●教學(xué)難點(diǎn)將某些單項(xiàng)式化為平方形式,再用平方差公式分解因式;培養(yǎng)

2、學(xué)生多步驟分解因式的能力.●教學(xué)方法引導(dǎo)自學(xué)法●教具準(zhǔn)備投影片兩張第一張(記作§4.3.1A)第二張(記作§4.3.1B)●教學(xué)過(guò)程Ⅰ.創(chuàng)設(shè)問(wèn)題情境,引入新課[師]在前兩節(jié)課中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式.如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過(guò)程,就能利用這種關(guān)系找到新的因式分解的方法,本節(jié)課我們就來(lái)學(xué)習(xí)另外的一種因式分解

3、的方法——公式法.Ⅱ.新課講解[師]1.請(qǐng)看乘法公式(a+b)(a-b)=a2-b2(1)左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過(guò)來(lái)就是a2-b2=(a+b)(a-b)(2)左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積.大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解?[生]符合因式分解的定義,因此是因式分解.[師]對(duì),是利用平方差公式進(jìn)行的因式分解.第(1)個(gè)等式可以看作是整式乘法中的平方差公式,第(2)個(gè)等式可以看作是因式分解中的平方差公式.2.公式講解[師]請(qǐng)大家觀察式子a2-b2,找出它的特點(diǎn).[生]是一個(gè)二項(xiàng)式,每項(xiàng)都可以化成整式的平方,整體來(lái)看是兩個(gè)整式的平方

4、差.[師]如果一個(gè)二項(xiàng)式,它能夠化成兩個(gè)整式的平方差,就可以用平方差公式分解因式,分解成兩個(gè)整式的和與差的積.如x2-16=(x)2-42=(x+4)(x-4).9m2-4n2=(3m)2-(2n)2=(3m+2n)(3m-2n)3.例題講解[例1]把下列各式分解因式:(1)25-16x2;(2)9a2-b2.解:(1)25-16x2=52-(4x)2=(5+4x)(5-4x);(2)9a2-b2=(3a)2-(b)2=(3a+b)(3a-b).[例2]把下列各式分解因式:(1)9(m+n)2-(m-n)2;(2)2x3-8x.解:(1)9(m+n)2-(m-n)2=[3

5、(m+n)]2-(m-n)2=[3(m+n)+(m-n)][3(m+n)-(m-n)]=(3m+3n+m-n)(3m+3n-m+n)=(4m+2n)(2m+4n)=4(2m+n)(m+2n)(2)2x3-8x=2x(x2-4)=2x(x+2)(x-2)說(shuō)明:例1是把一個(gè)多項(xiàng)式的兩項(xiàng)都化成兩個(gè)單項(xiàng)式的平方,利用平方差公式分解因式;例2的(1)是把一個(gè)二項(xiàng)式化成兩個(gè)多項(xiàng)式的平方差,然后用平方差公式分解因式,例2的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,當(dāng)一個(gè)題中既要用提公因式法,又要用公式法分解因式時(shí),首先要考慮提公因式法,再考慮公式法.補(bǔ)充例題投影片(§4

6、.3.1A)判斷下列分解因式是否正確.(1)(a+b)2-c2=a2+2ab+b2-c2.(2)a4-1=(a2)2-1=(a2+1)·(a2-1).[生]解:(1)不正確.本題錯(cuò)在對(duì)分解因式的概念不清,左邊是多項(xiàng)式的形式,右邊應(yīng)是整式乘積的形式,但(1)中還是多項(xiàng)式的形式,因此,最終結(jié)果是未對(duì)所給多項(xiàng)式進(jìn)行因式分解.(2)不正確.錯(cuò)誤原因是因式分解不到底,因?yàn)閍2-1還能繼續(xù)分解成(a+1)(a-1).應(yīng)為a4-1=(a2+1)(a2-1)=(a2+1)(a+1)(a-1).Ⅲ.課堂練習(xí)(一)隨堂練習(xí)1.判斷正誤解:(1)x2+y2=(x+y)(x-y);(×)(2)x

7、2-y2=(x+y)(x-y);(√)(3)-x2+y2=(-x+y)(-x-y);(×)(4)-x2-y2=-(x+y)(x-y).(×)2.把下列各式分解因式解:(1)a2b2-m2=(ab)2-m2=(ab+m)(ab-m);(2)(m-a)2-(n+b)2=[(m-a)+(n+b)][(m-a)-(n+b)]=(m-a+n+b)(m-a-n-b);(3)x2-(a+b-c)2=[x+(a+b-c)][x-(a+b-c)]=(x+a+b-c)(x-a-b+c);(4)-16x4+81y4=(9y2)2-(4x2)2=(9

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。