Normal coordinates in Riemannian and Kahler geometry

Normal coordinates in Riemannian and Kahler geometry

ID:39222504

大?。?39.89 KB

頁(yè)數(shù):24頁(yè)

時(shí)間:2019-06-27

Normal coordinates in Riemannian and Kahler geometry_第1頁(yè)
Normal coordinates in Riemannian and Kahler geometry_第2頁(yè)
Normal coordinates in Riemannian and Kahler geometry_第3頁(yè)
Normal coordinates in Riemannian and Kahler geometry_第4頁(yè)
Normal coordinates in Riemannian and Kahler geometry_第5頁(yè)
資源描述:

《Normal coordinates in Riemannian and Kahler geometry》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、OU-HET407PURD-TH-02-02hep-th/0203081March2002NormalCoordinatesinK¨ahlerManifoldsandtheBackgroundFieldMethodKiyoshiHigashijima1?,EtsukoItou1?andMunetoNitta2?1DepartmentofPhysics,GraduateSchoolofScience,OsakaUniversity,Toyonaka,Osaka560-0043,Japan2DepartmentofP

2、hysics,PurdueUniversity,WestLafayette,IN47907-1396,USAAbstractRiemannnormalcoordinates(RNC)areunsuitableforK¨ahlermanifoldssincetheyarenotholomorphic.Instead,K¨ahlernormalcoordinates(KNC)canbede?nedasholomorphiccoordinates.WeprovethatKNCtransformasarXiv:hep-t

3、h/0203081v317Jun2002aholomorphictangentvectorunderholomorphiccoordinatetransformations,andthereforethattheyarenaturalextensionsofRNCtothecaseofK¨ahlermanifolds.TheKNCexpansionprovidesamanifestlycovariantbackground?eldmethodpreservingthecomplexstructureinsuper

4、symmetricnonlinearsigmamodels.?E-mail:higashij@phys.sci.osaka-u.ac.jp?E-mail:itou@het.phys.sci.osaka-u.ac.jp?E-mail:nitta@physics.purdue.edu1IntroductionTheequivalenceprincipleassertsthatgeneralcoordinatetransformationsoncurvedspace-timesdonotalteranyphysics,

5、sothatonecanconsiderthecoordinatesthatmakeagivenapplicationthesimplest.Riemannnormalcoordinates(RNC)repre-sentonesuchsetofcoordinatesforRiemannmanifolds[1,2,3].Theyarede?nedascoordinatesalonggeodesiclinesstartingfromachosenpoint.Hence,anypointinapatchofRNChas

6、one-to-onecorrespondencewithatangentvectoratthechosenpoint.Inmostsuperstringtheories,extradimensionsofthehigher-dimensionalspace-timearecompacti?edtoaCalabi-Yaumanifold[4],whichisaRicci-?atK¨ahlermanifold.Thiscanbedescribedbyconformallyinvariantsupersymmetric

7、nonlinearsigmamodelsintwodimensions,whosetargetspacesareK¨ahlermanifolds[5].Forperturbative(ornon-perturbative)analyses,weneedtoexpandtheLagrangianintermsof?uctuating?eldsaroundthebackground?elds[6].Agenerallycovariantexpansionthatpreservesthecomplexstructure

8、ofthetargetspaceismostsuitableintheseanalyses.RNCprovideagenerallycovariantexpansion,buttheyarenotholomorphic,whereasK¨ahlernormalcoordinates(KNC)giveussuchanexpan-sion[7].KNCarede?nedasc

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。