Applying Dynamic Fuzzy Model in Combination

Applying Dynamic Fuzzy Model in Combination

ID:39355393

大?。?81.09 KB

頁數(shù):8頁

時(shí)間:2019-07-01

Applying Dynamic Fuzzy Model in Combination_第1頁
Applying Dynamic Fuzzy Model in Combination_第2頁
Applying Dynamic Fuzzy Model in Combination_第3頁
Applying Dynamic Fuzzy Model in Combination_第4頁
Applying Dynamic Fuzzy Model in Combination_第5頁
資源描述:

《Applying Dynamic Fuzzy Model in Combination》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、ApplyingDynamicFuzzyModelinCombinationwithSupportVectorMachinetoExploreStockMarketDynamismDeng-YivChiuandPing-JieChenDepartmentofInformationManagement,ChungHuaUniversityHsin-chuCity,Taiwan300,R.O.C.{chiuden,m09310006}@chu.edu.twAbstract.Inthestudy,anewdynamicfuzz

2、ymodelisproposedincombinationwithsupportvectormachine(SVM)toexplorestockmarketdynamism.Thefuzzymodelintegratesvariousfactorswithin?uentialdegreeastheinputvariables,andthegeneticalgorithm(GA)adjuststhein?uentialdegreeofeachinputvariabledynamically.SVMthenservestop

3、redictstockmarketdynamisminthenextphase.Inthemeanwhile,themultiperiodexperimentmethodisdesignedtosimulatethevolatilityofstockmarket.Then,wecompareitwithothermethods.Themodelfromthestudydoesgeneratebetterresultsthanothers.1IntroductionStockmarketisacomplicatedandv

4、olatilesystemduetotoomanypossiblein?uentialfactors.Inthepaststudies,asaresult,dynamisminthestockmar-ketwasoftenconsideredasrandommovement.Nevertheless,accordingtotheresearchesintherecentyears,itisnotentirelyrandom.Instead,itishighlycomplicatedandvolatile[1].Manyf

5、actors,includingmacroeconomicvariablesandstockmarkettechnicalindicators,havebeenproventohaveacertainlevelofforecastcapabilityonstockmarketduringacertainperiodoftime[2].Inthepastdecade,variousmethodshavebeenwidelyappliedinthestockmarketforecastsuchaslinearandnonli

6、nearmathematicalmodelsormulti-agentmech-anism[3]tosimulatethepotentialstockmarkettransactionmechanism,suchasarti?cialneuralnetwork(ANN)ofmultiplelayersofthresholdnonlinearfunction.Becauseoftheadvantagesofarbitraryfunctionapproximationandneedlessofstatisticsassump

7、tion,ANNiswidelyappliedinthesimulationofpotentialmar-kettransactionmechanism[4].Also,toimprovetheforecastperformance,somemachinelearningmethodsareapplied.Forexample,geneticalgorithm(GA)isusedtoreduceinputfeaturedimensionandselectbettermodelparameters[5]toincrease

8、theforecastaccuracyrate.Supportvectormachine(SVM)isanewlydevelopedmathematicalmodelwithoutstandingperformancesinhandlinghighdimensionentryspaceproblems.Suchafe

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時(shí)可能會顯示錯(cuò)亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。