Data Mining Techniques for Effective and Scalable Traffic Analysis

Data Mining Techniques for Effective and Scalable Traffic Analysis

ID:39358304

大?。?65.62 KB

頁數(shù):14頁

時(shí)間:2019-07-01

Data Mining Techniques for Effective and Scalable Traffic Analysis_第1頁
Data Mining Techniques for Effective and Scalable Traffic Analysis_第2頁
Data Mining Techniques for Effective and Scalable Traffic Analysis_第3頁
Data Mining Techniques for Effective and Scalable Traffic Analysis_第4頁
Data Mining Techniques for Effective and Scalable Traffic Analysis_第5頁
資源描述:

《Data Mining Techniques for Effective and Scalable Traffic Analysis》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、DataMiningTechniquesforEffectiveandScalableTrafficAnalysisM.Baldi,E.Baralis,F.RissoDipartimentodiAutomaticaeInformatica-PolitecnicodiTorinoCorsoDucadegliAbruzzi,2410129Torino,Italy{mario.baldi,elena.baralis,fulvio.risso}@polito.itAbstractThispaperdescribesa

2、novelapproachtotrafficanalysisinhighspeednetworksbasedondataminingtechniques.Dataminingtechniquesarehereappliedasameanstoeffectivelyprocessthesignificantamountofcaptureddata.Thepaperprovidesafirstevaluationoftheproposedapproachintermsofitsabilityofextractin

3、grelevantinformationanditscomputationalrequirements.Suchevaluationisbasedonexperimentsrunonaprototypalimplementationoftheproposedapproach.KeywordsTrafficAnalysis,NetworkMonitoring,DataMining1.IntroductionOneofthemostcriticalissuesinkeepinganetworkundercontr

4、oliscapturingandanalyzingitstraffic.Thecomplexityofthesetasksisincreasingasnetworksbecomefasterandfaster.MajorproblemsstemfromtheCPUpowerneededtoprocesscapturednetworktrafficandthestoragerequirementsofhistoricaldata.Often,trafficcapturingandanalysisgoesthro

5、ughthestepsdepictedinFigure1,allofwhicharecriticalwhenoperatingathighdatarates.Somelimitedprocessing(e.g.associatingeachpackettoitscorrespondingflow)iscarriedoutinreal-timeimmediatelyduringthecapturesession.Then,resultscanbestoredonadisktobefurtherelaborate

6、dwithoff-linetools,whichdonotsufferthelimitationsstemmingfromreal-timeprocessing.Ad-hocsolutionsbasedonadvancedhardware(e.g.thenetworkinterfacecardsprovidedbyEndace[16])andtheuseofSMPworkstationsorevenclusterscanmitigatetheproblemsrelatedtoon-linemonitoring

7、andanalysis(thefirststepsinFigure1).However,nostraightforwardsolutionexiststoreducethecriticalitiesofthesubsequentsteps.Forinstance,a10Gbpspipecarriesmorethan100TBytesinthecourseofaday,whichisatremendousamountofdatatobestoredforsubsequentprocessing.Thisresu

8、ltsintwoproblems:ontheonehand,theinfrastructureneededtostoresuchamountofdataissophisticatedandcostlyand,ontheotherhand,locatingrelevantinformationwithinthesaveddataiscomputationallyintenseandtimeconsum

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。