資源描述:
《Statistical Machine Learning for Data Mining and Collaborative Multimedia Retrieval》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、StatisticalMachineLearningforDataMiningandCollaborativeMultimediaRetrievalHOI,ChuHong(Steven)AThesisSubmittedinPartialFul?lmentoftheRequirementsfortheDegreeofDoctorofPhilosophyinComputerScienceandEngineeringcTheChineseUniversityofHongKongSeptember2006TheChines
2、eUniversityofHongKongholdsthecopyrightofthisthesis.Anyperson(s)intendingtouseapartorwholeofthematerialsinthethesisinaproposedpublicationmustseekcopyrightreleasefromtheDeanoftheGraduateSchool.Thesis/AssessmentCommitteeMembersProfessorTien-TsinWong(Chair)Professo
3、rMichaelR.Lyu(ThesisSupervisor)ProfessorLeoJiayaJia(CommitteeMember)ProfessorEdwardY.Chang(ExternalExaminer)Abstractofthesisentitled:StatisticalMachineLearningforDataMiningandCollaborativeMul-timediaRetrievalSubmittedbyHOI,ChuHong(Steven)forthedegreeofDoctorofP
4、hilosophyatTheChineseUniversityofHongKonginSeptember2006Statisticalmachinelearningtechniqueshavebeenwidelyappliedindataminingandmultimediainformationretrieval.Whiletradi-tionalmethods,suchassupervisedlearning,unsupervisedlearning,andactivelearning,havebeenexten
5、sivelystudiedseparately,therearefewcomprehensiveschemestoinvestigatethesetechniquesinauni?edapproach.Thisthesisproposesauni?edlearningparadigm(ULP)frameworkthatintegratesseveralmachinelearningtechniquesincludingsupervisedlearning,unsupervisedlearning,semi-super
6、visedlearning,activelearningandmetriclearninginasynergisticwaytomaximizethee?ectivenessofalearningtask.Basedonthisuni?edlearningframework,anovelschemeissug-gestedforlearningUni?edKernelMachines(UKM).TheUKMschemecombinessupervisedkernelmachinelearning,unsupervis
7、edkernelde-sign,semi-supervisedkernellearning,andactivelearninginane?ec-tivefashion.AkeycomponentintheUKMschemeistolearnkernelsfrombothlabeledandunlabeleddata.Tothispurpose,anewSpectralKernelLearning(SKL)algorithmisproposed,whichisrelatedtoaquadraticprogram.Emp
8、iricalresultsshowthattheUKMtechniqueispromisingforclassi?cationtasks.iWithintheuni?edlearningframework,thisthesisfurtherexplorestwoimportantchallengingtasks.OneisBatchModeAc