Statistical Machine Learning for Data Mining and Collaborative Multimedia Retrieval

Statistical Machine Learning for Data Mining and Collaborative Multimedia Retrieval

ID:39505460

大?。?.06 MB

頁數(shù):243頁

時間:2019-07-04

Statistical Machine Learning for Data Mining and Collaborative Multimedia Retrieval_第1頁
Statistical Machine Learning for Data Mining and Collaborative Multimedia Retrieval_第2頁
Statistical Machine Learning for Data Mining and Collaborative Multimedia Retrieval_第3頁
Statistical Machine Learning for Data Mining and Collaborative Multimedia Retrieval_第4頁
Statistical Machine Learning for Data Mining and Collaborative Multimedia Retrieval_第5頁
資源描述:

《Statistical Machine Learning for Data Mining and Collaborative Multimedia Retrieval》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、StatisticalMachineLearningforDataMiningandCollaborativeMultimediaRetrievalHOI,ChuHong(Steven)AThesisSubmittedinPartialFul?lmentoftheRequirementsfortheDegreeofDoctorofPhilosophyinComputerScienceandEngineeringcTheChineseUniversityofHongKongSeptember2006TheChines

2、eUniversityofHongKongholdsthecopyrightofthisthesis.Anyperson(s)intendingtouseapartorwholeofthematerialsinthethesisinaproposedpublicationmustseekcopyrightreleasefromtheDeanoftheGraduateSchool.Thesis/AssessmentCommitteeMembersProfessorTien-TsinWong(Chair)Professo

3、rMichaelR.Lyu(ThesisSupervisor)ProfessorLeoJiayaJia(CommitteeMember)ProfessorEdwardY.Chang(ExternalExaminer)Abstractofthesisentitled:StatisticalMachineLearningforDataMiningandCollaborativeMul-timediaRetrievalSubmittedbyHOI,ChuHong(Steven)forthedegreeofDoctorofP

4、hilosophyatTheChineseUniversityofHongKonginSeptember2006Statisticalmachinelearningtechniqueshavebeenwidelyappliedindataminingandmultimediainformationretrieval.Whiletradi-tionalmethods,suchassupervisedlearning,unsupervisedlearning,andactivelearning,havebeenexten

5、sivelystudiedseparately,therearefewcomprehensiveschemestoinvestigatethesetechniquesinauni?edapproach.Thisthesisproposesauni?edlearningparadigm(ULP)frameworkthatintegratesseveralmachinelearningtechniquesincludingsupervisedlearning,unsupervisedlearning,semi-super

6、visedlearning,activelearningandmetriclearninginasynergisticwaytomaximizethee?ectivenessofalearningtask.Basedonthisuni?edlearningframework,anovelschemeissug-gestedforlearningUni?edKernelMachines(UKM).TheUKMschemecombinessupervisedkernelmachinelearning,unsupervis

7、edkernelde-sign,semi-supervisedkernellearning,andactivelearninginane?ec-tivefashion.AkeycomponentintheUKMschemeistolearnkernelsfrombothlabeledandunlabeleddata.Tothispurpose,anewSpectralKernelLearning(SKL)algorithmisproposed,whichisrelatedtoaquadraticprogram.Emp

8、iricalresultsshowthattheUKMtechniqueispromisingforclassi?cationtasks.iWithintheuni?edlearningframework,thisthesisfurtherexplorestwoimportantchallengingtasks.OneisBatchModeAc

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。